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Dear Colleagues and Friends, 

 

It is our pleasure to welcome you to the 7th Seminar on Functional Analysis and its 

Applications, held during March 1-2, 2023 at Department of Pure Mathematics, Imam Khomeini 

International University, Qazvin, Iran. The Seminar on Functional Analysis and its Applications 

is a national seminars initiated by the Iranian Mathematical Society in 1986. The first seminar was 

hosted by Sharif University of Technology in 1986, and the latest one by the University of Isfahan 

in 2020.  

We wish the seminar to become a platform for raising discussions and creating joint research 

projects among the participants. Planning a virtual seminar has the advantage that more 

distinguished mathematicians from around the globe may participate in the event. Fortunately, this 

goal was achieved, and 5 eminent figures form China, the United States, Canada, Spain, and 

Sweden have accepted our invitation to deliver invited talks in a variety of subjects. 

We are happy to announce that the seminar was well received by mathematicians of our country. 

We have got more than 100 papers; but the time slot was limited, so that by the recommendation 

of our prominent scientific committee members we were forced to be more selective to accept just 

78 papers for contributed talks. Needless to say that some of the accepted papers were transferred 

to poster presentation section; this does not necessarily mean that the papers lack the quality 

requirements of the scientific committee.  

The seminar's program includes 5 invited talks, 74 contributed talks, and 4 poster presentations. 

We have assigned a 6-digit alphanumeric code to every contributed talk; the first character is A, 

B, C, or D, followed by a 5-digit number. These letters stand for Sections A, B, C, or D. The 

subsequent number following the letter is either 1 or 2, which indicates that the talk will be 

presented on Day 1 or Day 2 of the seminar. The last four-digit number represents the time of 

presentation.  

For example, the code  

A21430 means that the talk will be presented in Section A, on Day 2, at 14:30. 

A lecture whose code begins with "A" will takes place at room A of  

https://www.skyroom.online/ch/mathikiu/rooma/l/en 

The same applies to the letters B, C, and D. 

We wish to express our sincere thanks to our invited speakers and all participants for sharing their 

latest findings in this seminar. Last, but not least, we record our gratitude to our scientific 



committee members, twenty reputed functional analysts from across the country, for their 

invaluable efforts in evaluating the received papers in a reasonable amount of time. Their prompt 

action and accuracy of decision is greatly appreciated. We also record our thanks to our executive 

committee at IKIU for their cooperation and help; they have done everything to make this event 

pleasant. 

Finally, we wish you every success in the future, and hope that you all will enjoy this event. 

 

 

                              Ali Abkar  (Chair of Seminar),  

                              Abdolrahman Razani (Chair of Scientific Committee),  

                              Morteza Oveisiha (Chair of Executive Committee) 
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During the seminar, the following people helped us in different capacities. Some helped us in 

organizing and managing the sessions; some distinguished colleagues agreed to become the 

chair of our sessions; and finally some PhD students helped us with playing the recorded 

videos, and so on. We wish to record our sincere thanks to all of them: 
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Alexandru Aleman

University of Lund, Sweden
Email: alexandru.aleman@math.lu.se

ABSTRACT

Some natural generalizations of sub-Hardy (de Branges-Rovnyak) spaces
are Hilbert spaces of analytic functions in the disc, where the backward
shift acts as a contraction. The sub-Bergman spaces introduced by K.
Zhou area different generalization which is interesting in its own right.
These are essentially a particular case of Hilbert spaces of analytic
functions in the disc, where the forward shift satisfies a famous heredi-
tary inequality of S.Shimorin. The basic observation used in the talk is
that such spaces are reproducing kernel Hilbert spaces whose kernel is
obtained by dividing a given kernel (like the Szegö or Bergman kernel)
by a normalized completeNevanlinna-Pick kernel. The aim is to deduce
some general properties of these objects. We derive a useful formula
for the norm and discuss some approximation results as well as some
embedding theorems. This is a report about recent joint work with F.
Weistr¨om Dahlin as well as previous work joint with B. Malman.

14



Taylor polynomials on Local Dirichlet Spaces

Javad Mashreghi

Dèpartement de mathèmatiques et de statistique, Universitè
Laval, Quèbec, QC, Canada G1K 7P4

Email: Javad.Mashreghi@mat.ulaval.ca

ABSTRACT

The partial Taylor sums Sn, n ≥ 0, are finite rank operators on any Ba-
nach space of analytic functions on the open unit disc. In the classical
setting of disc algebra A, the precise value of ∥Sn∥A→A is not known.
These numbers are referred as the Lebesgue constants and they grow
like logn, modulo a multiplicative constant, when n tends to infinity.
We study ∥Sn∥ when it acts on the local Dirichlet space Dζ . There are
several distinguished ways to put a norm on Dζ and each choice natu-
rally leads to a different operator norm for Sn, as an operator on Dζ .
We consider three different norms on Dζ and, in each case, evaluate
the precise value of ∥Sn∥Dζ→Dζ

. In each case, we also show that the
maximizing function is unique.

15



Linearity in Nonlinear Settings

Juan B. Seoane-Sepúlveda
Department of Applied Mathematics and Mathematical
Analysis, School of Mathematical Sciences, Complutense

University of Madrid, Madrid, Spain
Email: jseoane@ucm.es

ABSTRACT

For the last decade there has been a generalized trend in Mathemat-
ics on the search for large algebraic structures (linear spaces, closed
subspaces, or infinitely generated algebras) composed of mathemati-
cal objects enjoying certain special properties. One of the earliest re-
sults in this directions was a famous theorem by V. I. Gurariy (1966),
in which he showed that the set of Weierstrass’ monsters (continu-
ous nowhere differentiable functions)contains (up to the zero function)
an infinite dimensional linear space. This trend has caught the eye
of many researchers and has also had a remarkable influence in Real
and Complex Analysis, Set Theory, Operator Theory, Summability
Theory,Polynomials in Banach spaces, Hypercyclicity and Chaos, Ax-
iomatic Set Theory, Probability Theory, and general Functional Anal-
ysis.

Throughout this lecture we shall present an account on the advances
and on the state of the art of this trend, nowadays known as lineability
and spaceability. Open problems and questions will also be provided
throughout the talk. On top of that we shall also discuss new potential
directions of research and techniques to tackle some of these problems.

16



Noncommutative good-λ inequalities

Jiao Yong

School of Mathematics and Statistics Central South
University Changsha, Hunan, 410083 P.R.China

Email: jiaoyong@csu.edu.cn

ABSTRACT

We propose a novel approach in noncommutative probability, which
can be regarded as an analogue of good-λ inequalities from the clas-
sical case due to Burkholder and Gundy (Acta Math. 124: 249-304,
1970). This resolves a longstanding open problem in noncommuta-
tive realm. Using this technique, we offer a new, simpler and unified
approach to fundamental results in the noncommutative martingale
theory, obtained earlier by Junge, Pisier, Randrianantoanina and Xu.
We also present some fully new applications of good-λ approach to
noncommutative probability and noncommutative harmonic analysis,
including new estimates for noncommutative martingales with tangent
difference sequences and sums of tangent positive operators, as well as
inequalities for differentially subordinate operators which have roots in
the Lp-bound for the directional Hilbert transforms on free group von
Neumann algebras and the Lp-estimate for the j-th Riesz transform
on group von Neumann algebras. We emphasize that all the constants
obtained in this paper are of optimal orders.
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Sub-Bergman Hilbert Spaces in the Unit Disk

Kehe Zhu
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ABSTRACT

Let H∞
1 denote the closed unit ball of the algebra of bounded analytic

functions on the unit disk D. For φ ∈ H∞
1 consider the defect opera-

tors Dφ and Dφ for the Toeplitz operators Tφ and T ∗
φ, respectively, on

the weighted Bergman space A2
α. The ranges of Dφ and Dφ, denoted

by H(φ) and H(φ) and equipped with appropriate inner products, are
called sub-Bergman spaces. I will talk about the relatively new the-
ory of sub-Bergman (and sub-Hardy) Hilbert spaces, including their
reproducing kernels, the compactness of the defect operators, and the
identification of H(φ) and H(φ) with more familiar function spaces.
For example, when α > −1, we have H(φ) = H(φ) = A2

α−1 if and only
if ϕ is a finite Blaschke product. Part of the talk is based on recent
joint work with Shuaibing Luo of Hunan University.
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ON COMPOSITION-DIFFERENTIATION OPERATORS IN
BERGMAN SPACES

A. ABKAR, Y. BAYAT, S. ESKANDARI∗

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International
University, Qazvin 34194, Iran

abkar@sci.ikiu.ac.ir; y.bayat@edu.ikiu.ac.ir; S.Eskandari@edu.ikiu.ac.ir

Abstract. In this paper we aim to study conditions under which every
weighted composition-differentiation operator on the Bergman space is
compact.

1. Introduction

We begin by introducing some well-known functional Hilbert spaces of
analytic functions in the unit disk. Let f be an analytic function in the unit
disk D. The function f is said to belong to the Hardy space H2 if

‖f‖2 = sup
0<r<1

1

2π

∫ 2π

0
|f(reiθ)|2dθ <∞.

It is easy to see that, for an analytic function f(z) =
∑∞

n=0 anz
n, the norm

of f in H2 satisfies

‖f‖2 =
∞∑
n=0

|an|2.

2020 Mathematics Subject Classification. Primary 47B33; 46E22
Key words and phrases. Weighted Bergman space; composition-differentiation opera-

tor; compact operator.
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Another functional Hilbert space on the unit disk is the weighted Bergman
space A2

α consisting of all analytic functions f in the unit disk for which the
integral ∫

D
|f(z)|2(1− |z|2)αdA(z)

is finite. Here α is a real parameter larger than −1, and dA(z) = π−1dxdy
is the normalized area measure in the unit disk. The norm of f is defined
by

‖f‖2A2
α
= (α+ 1)

∫
D
|f(z)|2(1− |z|2)αdA(z).

A computation reveals that for f(z) =
∑∞

n=0 anz
n, we have

‖f‖2A2
α
=

∞∑
n=0

n! Γ(α+ 2)

Γ(n+ α+ 2)
|an|2,

where Γ(·) is the Euler gamma function.
Let H denote a particular functional Hilbert space of analytic functions

on the open unit disk. For an analytic self-mapping φ on the unit disk, the
composition operator Cφ : H → H is defined by

Cφ(f) = f ◦ φ.

It is well-known [2, Corollary 3.7] that the composition operator is bounded
on the Hardy space H2 and on the Bergman space. Another operator which
is closely related to the composition operator is the so-called differentiation
operator D(f) = f ′ provided that f ′ belongs to H as well. In the context of
analytic functions, it is easy to verify that the differentiation operator is not
bounded on the Hardy space H2; since {zn}n≥1 is a sequence of unit vectors
in the Hardy space satisfying ‖D(zn)‖ = n. Nevertheless, for many analytic
self-mappings φ on the unit disk, the operator Dφ : H2 → H2 defined by

Dφ(f) = f ′ ◦ φ

is bounded. Following [3], we call Dφ a composition-differentiation opera-
tor. This operator was already studied by several authors, among them S.
Ohno characterized its boundedness and compactness in terms of Carleson
measures; see also [1], where the authors discussed the conditions to ensure
that the composition-differentiation operator is Hilbert-Schmidt.

In the year 2006 Shûichi Ohno proved that if

‖φ‖∞ = sup{|φ(z)| : z ∈ D} < 1,

then Dφ is a Hilbert-Schmidt operator, and hence bounded and compact;
see [4, Theorem 3.3]. According to [4], for a univalent self-map φ of the unit
disk, the operator Dφ on the Hardy space H2 is bounded if and only if

sup
w∈D

1− |w|
(1− |φ(w)|)3

<∞.
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Moreover, Dφ on H2 is compact if and only if

lim
|w|→1−

1− |w|
(1− |φ(w)|)3

= 0.

Assuming that the symbol function φ is an analytic self map of the unit
disk, we study the operator Dφ on the weighted Bergman space and provide
an equivalent condition for the compactness of Dφ when α ≥ 1.

2. The Main Result

In this section we aim to characterize the compactness of composition-
differentiation operator Dφ on the weighted Bergman space A2

α. For this
reason, we begin by computing the adjoint of the composition-differentiation
operator Dψ,φ. Recall that the Hardy, and the Bergman space are repro-
ducing kernel Hilbert spaces. It is well-known that the reproducing kernel
for the weighted Bergman space A2

α is

Kα
w(z) =

1

(1− wz)α+2
, (z, w) ∈ D× D.

This means that for each f ∈ A2
α we have

f(w) = 〈f,Kα
w〉 =

∫
D

f(z)

(1− zw)α+2
dAα(z),

where
dAα(z) = (α+ 1)(1− |z|2)αdA(z).

It now follows that

f ′(w) =

∫
D
f(z)

(α+ 2)z

(1− zw)2α+3
dAα(z).

Now, the uniqueness of the kernel function implies that

K(1)
α,w(z) :=

(α+ 2)z

(1− wz)2α+3
, (z, w) ∈ D× D

is the reproducing kernel corresponding to the functional f 7→ f ′(w) defined
on the weighted Bergman space A2

α. In other words, for each f ∈ A2
α we

have
f ′(w) = 〈f,K(1)

α,w〉, w ∈ D.

Lemma 2.1. Let φ be an analytic self map on D, and let ψ : D → C be
an analytic function such that Dψ,φ is bounded on A2

α. Then D∗
ψ,φ(K

α
w) =

ψ(w)K
(1)
α,φ(w).

Theorem 2.2. Let φ be an analytic self map of the unit disk, and α ≥ 1.
Then the operator Dφ : A2

α(D) → A2
α(D) is compact if and only if

lim
|w|→1−

(
1− |w|2

(1− |φ(w)|2)2

)α+2

= 0. (2.1)
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Proof. Let Dφ be compact and

kαw(z) =
√

(1− |w|2)α+2Kα
w(z) =

√
(1− |w|2)α+2

(1− wz)α+2

be the normalized reproducing kernels of A2
α(D). Let

K(1)
α,w(z) =

(α+ 2)z

(1− wz)2α+3

be the reproducing kernel corresponding to the functional f 7→ f ′(w) on
the weighted Bergman space A2

α(D). By Lemma 2.1, D∗
φ(K

α
w) = K

(1)
α,φ(w).

Therefore,

‖D∗
φ(k

α
w)‖2 = (1− |w|2)α+2‖K(1)

α,φ(w)‖
2

= (1− |w|2)α+2 (α+ 2)
[
1 + (α+ 2)|φ(w)|2

]
(1− |φ(w)|2)2α+4

= (α+ 2)
[
1 + (α+ 2)|φ(w)|2

]( 1− |w|2

(1− |φ(w)|2)2

)α+2

.

But kαw → 0 weakly as |w| → 1− (see [2, Theorem 2.17]), so that the
compactness of D∗

φ implies that ‖D∗
φk

α
w‖ → 0 as |w| → 1−. This yields

lim
|w|→1−

(
1− |w|2

(1− |φ(w)|2)2

)α+2

= 0.

Conversely, assume that φ satisfies the condition (2.1). Let (fn) be a
bounded sequence in A2

α(D) that converges weakly to zero. We proceed
to show that ‖Dφfn‖ → 0 as n→ ∞. □
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Abstract. Some new results closely related to the generalized Briot-
Bouquet differential subordination are investigatedin in a new approach
for functions with fixed second coefficient.

1. Introduction and preliminaries

Let H be the class of analytic functions in the unit disc U = {z : |z| < 1}.
For a ∈ C and n ∈ N, we denote by Hβ[a, b] and An,b sets of analytic
functions with fixed initial coefficient, respectively, as below:

Hβ[a, n] =
{
p ∈ H : p(z) = a+ βzn + an+1z

n+1 + · · ·
}
,

and
An,b = {f ∈ H : f(z) = z + bzn+1 + · · · , z ∈ U}.

where β and b ∈ C are fixed. Here, we assume that β and b are positive real
numbers. The concept of subordination was introduced to describe a relation
between pairs of analytic functions; Let f(z) and g(z) be members of the
class H. we sayvthat f(z) is subordinate to g(z) and write by f(z) ≺ g(z)
if there exists a function w(z) ∈ H with w(0) = 0, |w(z)| < 1 (z ∈ U), such
that f(z) = g(w(z)) (z ∈ U). It is easy to see that when g(z) is univalent in
U, then f(0) = g(0) and f(U) ⊆ g(U) is the equivalent definition of sub-
ordination. The start of differential subordination theory began in 1974 by

2020 Mathematics Subject Classification. Primary 30C45; Secondary 30C80
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Miller, Mocanu and Reade [7]. Then in 1981, Miller and Mocanu [6] intro-
duced the analogues differential subordination and built the theory for this
type of differential implications. In 2011, Rosihan, Nagpal and Ravichan-
dran [12] extended the theory of second-order differential subordination for
functions with fixed initial coefficient. This led to many results related to
the differential subordination being extended and improved, that recently
have published several articles on the application of this new result(For ex-
ample, see [1, 2, 3, 4]). In this paper, by extension of the Nunokawa lemma
[9, 10] due to author et al. [2], some new results closely related to the gen-
eralized Briot-Bouquet differential subordination are investigated in a new
approach for functions with fixed second coefficient. First, we need some of
the following fundamental definition and theorems.

Definition 1.1. ([8], [p.24]) Assume that Q is the set of functions q that are
analytic and injective on U\E(q) with E(q) := {ζ ∈ ∂U : limz→ζ q(z) =∞},
and are such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

Lemma 1.2. [12] Let q ∈ Q with q(0) = a, and p ∈ Hβ[a, n] with p(z) 6≡ a.
If p 6≺ q, then there exist points z0 ∈ U and ζ0 ∈ ∂U\E(q) for which p(z0) =
q(ζ0), p({z : |z| < |z0|}) ⊂ q(U) and z0p

′(z0) = mζ0q
′(ζ0). Moreover

Re

{
1 +

z0p
′′(z0)

p′(z0)

}
≥ m Re

{
1 +

ζ0q
′′(ζ0)

q′(ζ0)

}
, (1.1)

for some m ≥ n+ (q′(0)| − β|z0|n)/(|q′(0)|+ β|z0|n)

Lemma 1.3. [1] Let p ∈ Hβ[1, n] and p(z) 6= 0 in U. If there exist z0 ∈ U
such that |arg p(z)| < πα/2 for |z| < |z0| and |arg p(z0)| = πα/2 where
α > 0. Then we have

z0p
′(z0)

p(z0)
= iαm , m ≤ −1

2

(
a+

1

a

)(
n+

2α− β
2α+ β

)
when arg p(z0) = −πα

2 and

z0p
′(z0)

p(z0)
= iαm , m ≥ 1

2

(
a+

1

a

)(
n+

2α− β
2α+ β

)
when arg p(z0) = πα

2 where p(z0)
1
α = ±ia and 0 ≤ β ≤ 2α.

2. Main Results

Theorem 2.1. Let B(z) and C(z) be analytic in U with |Im{C(z)}| <
Re{B(z)}. If p(z) ∈ Hβ[1, n], 0 ≤ β ≤ 2, and if

|arg{B(z)zp′(z) + C(z)p(z)}| < π

2
+ t(z), (2.1)
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where

t(z) =


arg
{
B(z)i

[
2(n+1)+β(n−1)

2+β

]
+ C(z)

}
:= τ when τ ∈ [0, π/2],

arg
{
B(z)i

[
2(n+1)+β(n−1)

2+β

]
+ C(z)

}
− π

2 := τ ′ when τ ∈ (π/2, π],

(2.2)
then Re{p(z)} > 0. (z ∈ U)

Remark 2.2. Theorem 2.1 improves a result due to Miller and Mocanu [See
[5], p. 208]. Also, it extends a result due to Nunokawa et al. [See [11], p. 3].

Corollary 2.3. Let g(z) ∈ Hβ[1, n], 0 ≤ β ≤ 2 with

|Im
{
zg′(z)

g(z)

}
| < 1,

and let f ∈ An,b. Suppose that

|Im{g(z)f ′(z)}| < π

2
+ ν(z), (z ∈ U)

where

ν(z) =


arg
{
i
[
2(n+1)+(β+b)(n−1)

2+β+b

]
+ 1− zg′(z)

g(z)

}
:= λ when λ ∈ [0, π/2],

arg
{
i
[
2(n+1)+(β+b)(n−1)

2+β+b

]
+ 1− zg′(z)

g(z)

}
− π

2 := λ′ when λ ∈ (π/2, π].

Then we have

Re

{
g(z)f(z)

z

}
> 0. (z ∈ U)

Remark 2.4. By taking β + b = 2 and n = 1, Corollary 2.3 reduces to a
result obtained by Nunokawa et al. [See [11], p. 5]. Also, it improves a
result due to Miller and Mocanu [See [5], p. 208]

Theorem 2.5. Let B(z) and C(z) be analytic in U with B(z) 6= 0. Suppose
that

Re

{
C(z)

B(z)

}
≥ −T (n, β), (z ∈ U) (2.3)

where

T (n, β) =
n+ 1 + β(n− 1)

1 + β
, (2.4)

for 0 ≤ β ≤ 1 and n ≥ 1. If p(z) ∈ Hβ[0, n], and if

|B(z)zp′(z) + C(z)p(z)| < |B(z) + C(z)|, (z ∈ U) (2.5)

then |p(z)| < 1. (z ∈ U)

Theorem 2.6. Let B(z) and C(z) be analytic in U with B(z) 6= 0. Suppose
that

Im

{
C(z)

B(z)

}
≥ T (n, β)

|B(z)|
, (z ∈ U) (2.6)
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where T (n, β) is the same as (2.4) with 0 ≤ β ≤ 1 and n ≥ 1. If p(z) ∈
Hβ[0, n], and if

|B(z)zp′(z) + C(z)p(z)| <

√
1 + |B(z)|2

[
zp′(z)

p(z)
+ Re

{
C(z)

B(z)

}]2
, (2.7)

in U, then |p(z)| < 1. (z ∈ U).

Remark 2.7. Theorem 2.6 improves a result due to Miller and Mocanu [See
[5], p .207].

Theorem 2.8. If p ∈ Hβ[0, n] with 0 ≤ β ≤ 1 and n ≥ 1, then

|zp′(z)|+
∣∣∣∣z2p′′(z)p(z)

∣∣∣∣ < [n+
1− β
1 + β

]2
(2.8)

implies that |p(z)| < 1.

Remark 2.9. By taking β = n = 1, Theorem 2.8 reduces to a result due to
Miller and Mocanu [See [5], p .207].
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Abstract. In this paper, we verify Hermite-Hadamard integral in-
equality on some types of convex functions. Previous results are some
part of our consequences.

1. Introduction

Let f : I ⊂ R → R be a convex function on an interval I and x, y ∈ I.
Then (trapezium inequality)

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(t) dt ≤ f(a) + f(b)

2
. (1.1)

This double inequality is known in the literature as the Hermite-Hadamard
(HH) integral inequality for convex functions.

2. Preliminary

Definition 2.1 ([12]). Let m, t, α ∈ [0, 1]. Then the real number set C ⊆ R
is said to be

(1) convex if tx+ (1− t)y ∈ C;
(2) m-convex if tx+ (1− t)my ∈ C;
(3) (α,m)-convex if tαx+ (1− tα)my ∈ C;

2020 Mathematics Subject Classification. Primary 26D07; Secondary 26D15
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for all x, y ∈ C and t,m ∈ [0, 1].

Definition 2.2 ([3, 4, 9, 10, 12]). Let m ∈ [0, 1] and C ⊆ R. A function
f : C ⊂ R→ R is said to be an

(1) convex, if C be a convex set and

f(tx+ (1− t)y] ≤ tf(x) + (1− t)f(y);

(2) m-convex, if C be a m-convex set and

f(tx+ (1− t)my] ≤ tf(x) + (1− t)mf(y);

(3) (α,m)-convex, if C be a (α,m)-convex set and

f(tx+ (1− t)my] ≤ tαf(x) + (1− tα)mf(y);

(4) f is concave if −f is convex;
(5) f is m-concave if −f is m-convex.
(6) f : [a, b] → R is star shaped if f(tx) ≤ tf(x) for all t ∈ [0, 1] and

x ∈ [a, b].

for all x, y ∈ C and t,m ∈ [0, 1].

Remark 2.3. ([10, 7])

(1) When t = 1, we get f(my) ≤ mf(y) for all x, y ∈ I, means the
function f is sub-homogeneous.

(2) If f was convex function and m = 1, it would be m-convex function.

Lemma 2.4. ([4, 7])

(1) If f : C → R is m-convex and 0 ≤ n < m ≤ 1, then f is n-convex.
(2) Let f, g : [a, b]→ R, a ≥ 0. If f is n-convex and g is m-convex, with

n ≤ m, then f + g and αf , α ≥ 0 a constant, are n-convex.
(3) Let f : [0, a] → R, g : [0, b] → R, with renge(f) ⊆ [0, b]. If f and g

are m-convex and g is increasing, then g ◦ f is m-convex on [0, a].
(4) If f, g : [0, a] → R are both nonnegative, increasing and m-convex,

then fg is m-convex.

3. Main results

Put co(A) = {f : f is convex} and com(B) = {f : f is m− convex}. So
com(B) $ co(A), See more detail in [1].

Theorem 3.1. Let m ∈ [0, 1] and C ⊆ R and function f : C ⊂ R → R be
a m-convex function on an interval C and a, b ∈ C. If a + mb = r + s for
every r and s. Then

f

(
a+mb

2

)
≤ 1

2

(
1

r − a

∫ r

a
f(u)du+m

1

mb− s

∫ mb

s
f(u)du

)
≤ f(r) +mf(s)

2
+
f(a) +mf(mb)

2
.
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Corollary 3.2. By hypothesis of Threorem 3.1 we have:

1

2

(
1

r − a

∫ r

a
f(u)du+m

1

mb− s

∫ mb

s
f(u)du

)
≤ f(r) + f(a)

2
+m

f(s) +mf(b)

2
.

Corollary 3.3.

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(t)dt ≤ f(a) + f(b)

4
+

1

2
f

(
a+ b

2

)
.

An other version of Theorem 3.1:

Theorem 3.4. Let m ∈ [0, 1] and C ⊆ R and function f : C ⊂ R→ R be a
m-convex function on an interval C and a, b ∈ C. Then

f

(
a+mb

2

)
≤ 1

mb− a

(∫ mb+a
2

a
f(u)du+m

∫ mb

mb+a
2

f(u)du

)

≤ f(a) +mf(b)

2

(
m+ 1

4

)
+
f(a) +m2f(b)

4

=
(3m+ 1)(mf(b)) + (m+ 3)f(a)

8
.

Corollary 3.5. By hypothesis of Theorem 3.4:

1

mb− a

(∫ mb+a
2

a
f(u)du+m

∫ mb

mb+a
2

f(u)du

)
≤ (3m+ 1)(mf(b)) + (m+ 3)f(a)

8
.

If we put m = 1 in Theorem 3.4, then we will find Hermite-–Hadamard
(HH) integral inequality.

For more details and some of related references see [2, 5, 6, 8, 11, 13].
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Abstract. When X is an infinite-dimensional Banach space and B(X)
denotes the Banach algebra of all bounded linear operators on X, then
we will consider topological transitive operators in B(X). In this paper,
we will investigate the density of the range of a topological transitive
operator on X.

1. Introduction and preliminaries

Assume that X is a Banach space and B(X) denotes the Banach algebra
of all bounded linear operators on X. Consider an operator T ∈ B(X). If
for every pair U, V of nonempty open subsets of X, there is a positive integer
n so that subset Tn(U)∩ V is nonempty, then the operator T is topological
transitive. The first example of topological transitive operators was pre-
sented by Birkhoff in [4]. If the underlying space is considered as a separable
Banach space, then it is a simple matter to see that topological transitivity
is equivalent to hypercyclicity. To be more clear, if B is a subset of X, then
the orbit of B under T is the set orb(T,B) = {Tnx; x ∈ B,n = 0, 1, 2, · · · }.
if B is a singleton {x} and orb(T,B) = X, then T is called a hypercyclic
operator and x is a hypercyclic vector for T . If B = {λx; λ ∈ C} for some
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vector x ∈ X and orb(T,B) is a dense subset of X, then this operator is
said to be a supercyclic operator and the vector x is a supercyclic vector for
T . Note that, since {Tnx; x ∈ X,n = 0, 1, 2, · · · } ⊆ T (X), so a topological
transitive operator T on a separable Banach space has dense range. We
recall that, there is no hypercyclic operator on a finite-dimensional Banach
space. On the other side, Ansari [1] showed that every infinite-dimensional
separable Banach space admits a topological transitive operator. Hence, in
the following X is an infinite-dimensional Banach space.

It is worth pointing out that when X is an infinite-dimensional non-
separable Banach space, then obviously X cannot support hypercyclic oper-
ators. However, it is well known that topologically transitive operators may
exist in X, see for instance [5].

Now it is natural to raise the following question.
Problem. Let T be a topological transitive operator T on a non-separable
Banach space X. Dose it have dense range?.

In the next section we will give positive answer to this question as the
main result of this paper. For details and references on topological transitive
operators on non-separable and separable Banach spaces see [2] and [3].

2. Topological transitivity and whose equivalent assertions

The second section deals with some assertions which are equivalent to
topological transitivity. We emphasize that in this section the underlying
space X is an arbitrary Banach space, so it may be a non-separable Banach
space. Then we will give two different proofs of the density of the range of
a topological transitive operator on X.

Theorem 2.1. Let T be an operator on a Banach space X. Then the
following are equivalent.
i) T is topological transitive,

ii)
∞⋃
n=0

Tn(U) = X, whenever U is an arbitrary open subset of X,

iii)
∞⋃
n=0

T−n(U) = X, whenever U is an arbitrary open subset of X,

iv) every proper open T−1-invariant subset of X is dense in X,
v) every proper closed T -invariant subset of X is nowhere dense in X.

Proof. Since Tn(U) ∩ V ̸= ∅ and T−n(V ) ∩ U ̸= ∅ are equivalent, so it is
evident that the assertions (i), (ii) and (iii) are equivalent. Thus we only
need to prove (i) ⇐⇒ (iv), because (i) ⇐⇒ (v) can be proved in much the
same way as (i) ⇐⇒ (iv). For this goal, in the first step assume that U is
an open subset of X and T−1(U) ⊆ U . To obtain a contradiction, suppose
that there exists an x ∈ X \U . Now if we cosider a neighbourhood Vx of x,
then (i) implies that Tn(Vx) ∩ U ̸= ∅, for some n ∈ N. Consequently, the
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contradiction
∅ ̸= T−n(U) ∩ Vx ⊆ T−n+1(U) ∩ Vx ⊆ · · ·U ∩ Vx = ∅,

shows that (i) implies (iv).
Conversely, again to obtain a contradiction suppose that( ∞⋃

n=0

T−n(U)

)
∩ V = ∅,

for some non-empty open subsets U, V of X. This means that the open
subset Û :=

∞⋃
n=0

T−n(U) is not dense in X. The assertion (iv) implies

that T−1(Û) ⊈ Û which is a contradiction because it is easy to check that
T−1(Û) ⊆ Û . Therefore the proof of (iv) ⇒ (i) is completed.

□
We can get the following corollary from the assertion (iii) in the previous

theorem.

Corollary 2.2. Every topological transitive operator on a separable or non-
separable has dense range.

Proof. Let V be an arbitrary open subset of X. the assertion (iii) implies
that T−m(V ) ∩ V ̸= ∅, for some m ∈ N, so there exists a vector x ∈ V such
that Tmx ∈ V . This means that Tmx ∈ T (X) and consequently V ∩ T (X)
is non-empty. Therefore T (X) is dense in X. □

It is interesting to know that the above result can be derived from (v).
Thus we give a different proof of the above corollary.
Proof. Assume that T is topological transitive operator and also assume
that λ is an eigenvalue of T ∗. If x∗ is a corresponding eigenvector to λ, then
one of the subsets {x : |x∗(x)| ≥ 1} or {x : |x∗(x)| ≤ 1} is an invariant
under T with non-empty interior. This contrary to the assertion (v) and
consequently σp(T

∗) = ∅. Since σp(T
∗) = ∅ is equivalent to the density of

the range of T , so the proof is completed. □

References
1. S. I. Ansari, Existence of hypercyclic operators on topological vector spaces, J. Funct.

Anal., 148 (1997), 384–390.
2. M. Asadipour and B. Yousefi, On some properties of J-class operators, Commun. Ko-

rean Math. Soc. 34 (2019), no. 1, 145–154.
3. F. Bayart and E. Matheron, Dynamics of Linear Operators, Cambridge University

Press, Cambridge, 2009.
4. G. Birkhoff, Demonstration dun theoreme sur les fonctions entieres, C. R. Acad, Sci.

Paris, 189 (1929), 473–475.
5. J. Bonet, L. Frerick, A. Peris and J. Wengenroth, Transitive and hypercyclic operators

on locally convex spaces, Bull. London Math. Soc., 37 (2005), 254-264.

34



Oral Presentation ∗ : Speaker

COMPLETE CONTINUITY OF WEIGHTED

COMPOSITION-DIFFERENTIATION OPERATORS IN

HARDY SPACE

A. BABAEI∗AND A. ABKAR

Department of Pure Mathematics, Faculty of Science, Imam Khomeini International
University, Qazvin 34194, Iran

a.babaei@edu.ikiu.ac.ir; abkar@sci.ikiu.ac.ir

Abstract. In this paper we explore conditions under which every weighted
composition-differentiation operator on the Hardy space H1(D) is com-
pletely continuous.

1. Introduction

Let X be a Banach space of analytic functions on the unit disk, and let
ϕ be an analytic self-mapping on the unit disk. The composition operator
Cϕ : X → X is defined by

Cϕ(f) = f ◦ ϕ.
It is well-known that the composition operator is bounded on the Hardy
space Hp and on the Bergman space Ap where p is a positive number. For a
function ψ ∈ X , the weighted composition operator Cψ,ϕ : X → X is defined
by

Cψ,ϕ(f) = ψ · f ◦ ϕ.
Similarly, we can define the composition-differentiation operator Dϕ : X →
X by

Dϕ(f) = f ′ ◦ ϕ.
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In most cases the functional Banach space X equals either the Hardy space
Hp or the Bergman space Ap. According to [4, Corollary 3.2], for a univalent
self-map ϕ of the unit disk, the operator Dϕ on the Hardy space H2 is
bounded if and only if

sup
z∈D

1− |z|
(1− |ϕ(z)|)3

<∞.

Moreover, Dϕ is compact on H2 if and only if

lim
|z|→1

1− |z|
(1− |ϕ(z)|)3

= 0.

Now, let ψ be an analytic function on the unit disk, and define the weighted
composition-differentiation operator Dψ,ϕ : X → X by the following rela-
tion:

Dψ,ϕ(f) = ψ · f ′ ◦ ϕ.
This operator was recently studied in [1] and [3].

An operator T : X → X is said to be completely continuous if xn → x
weakly in X , implies ‖Txn − Tx‖ → 0. It is well-known that on a Banach
space X , every compact operator is completely continuous. On the other
hand, if the Banach space X is reflexive, then completely continuous oper-
ators are compact. In this paper we shall focus on the non-reflexive Hardy
space H1, and try to find conditions under which the weighted composition-
differentiation operator Dψ,ϕ is completely continuous. We shall provide
characterizations for the complete continuity of this operator in terms of ψ
and ϕ. More precisely, we prove that Dψ,ϕ is completely continuous if and

only if ψ = 0 almost everywhere in {eiθ : |ϕ(eiθ)| = 1}.

2. Preliminaries

An analytic function f on the unit disk is said to belong to the Hardy
space Hp = Hp(D) if

‖f‖pHp = sup
0≤r<1

1

2π

∫ 2π

0
|f(reiθ)|pdθ <∞.

For 1 ≤ p <∞, the Hardy space Hp is a Banach space of analytic functions,
and for p = 2 it is a Hilbert space with the following inner product:

〈f, g〉 =
1

2π

∫ 2π

0
f∗(eiθ)g∗(eiθ)dθ,

where
f∗(eiθ) := lim

r→1−
f(reiθ)

is the boundary function of f . It is easy to see that for f ∈ H2 with Taylor
series f(z) =

∑∞
n=0 anz

n, the norm of f is given by

‖f‖2H2 =

∞∑
n=0

|an|2.
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Recall that an operator T : X → X is compact if for every bounded sequence
(xn) in X , the sequence (Txn) has a convergent subsequence. We remark
that for 1 < p < ∞, the Hardy space Hp is reflexive; meaning that it is
isometrically isomorphic with its dual. We know that on reflexive Banach
spaces, an operator T is compact if and only if it is completely continuous.
In this paper, we concentrate on the non-reflexive Banach space H1 and the
composition-differentiation operator Dψ,ϕ on H1. We will find conditions
on the function ϕ to ensure that the operator Dψ,ϕ is completely continuous
on H1.

3. Main Result

In the following theorem we shall characterize the complete continuity of
composition-differentiation operator in terms of ψ and ϕ.

Theorem 3.1. Let ψ ∈ H1 and ϕ be a self-map on D. Assume that Dψ,ϕ

is bounded on H1. Then Dψ,ϕ is completely continuous on H1 if and only

if ψ = 0 almost everywhere in {eiθ : |ϕ(eiθ)| = 1}.

Proof. Let Dψ,ϕ be completely continuous, and let T denote the unit circle.

Assume that f ∈ L∞(T) and let f̂(n) be its n-th Fourier coefficient. By
Riemann-Lebesgue lemma we have∫

T
f(z)zndm = f̂(n)→ 0, n→∞.

This means that {zn} converges to zero weakly in L1(T), and hence weakly
in H1. Since Dψ,ϕ is completely continuous, it follows that

‖Dψ,ϕ(zn)‖H1 → 0, n→∞.

On the other hand, for each n ∈ N,

0 ≤
∫
{eiθ:|ϕ(eiθ)|=1}

|ψ|dm ≤
∫
{eiθ:|ϕ(eiθ)|=1}

n|ψ|dm

=

∫
{eiθ:|ϕ(eiθ)|=1}

n|ψ||ϕ|n−1dm

≤
∫
T
n|ψ||ϕ|n−1dm

= ‖Dψ,ϕ(zn)‖H1 → 0, n→∞.

Therefore the integral on the left-hand side must be zero, from which it
follows that ψ = 0 almost everywhere in {eiθ : |ϕ(eiθ)| = 1}.

Conversely, Let (fn) be a weak null sequence in H1. It follows that
f ′n → 0 uniformly on compact subsets of D. Using this fact together with
the assumption that ψ = 0 almost everywhere in {eiθ : |ϕ(eiθ)| = 1}, we
conclude that

Dψ,ϕ(fn)(eiθ) = ψ(eiθ)f ′n(ϕ(eiθ))→ 0, a.e. inT.
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It now follows that Dψ,ϕ(fn) converges to zero in measure in L1(T) (see
[5, page 74]). Moreover, the boundedness of Dψ,ϕ on H1 implies that
Dψ,ϕ(fn)→ 0 in the weak topology of H1, and hence in the weak topology of
L1(T). Finally, we invoke the fact that weak convergence of a given sequence
together with its convergence in measure implies its norm convergence (see
[2, page 295]), that is, ‖Dψ,ϕ(fn)‖H1 → 0 as n→∞. �
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Abstract. We study the convergence of composition operators with
respect to weak operator topology as well as strong operator topology
on the Hardy space of analytic functions in the unit disk.

1. Introduction

Let H be a Hilbert space of analytic functions on the unit disk. For
instance, H is the Hardy space H2, or the Bergman space A2. Given an
analytic self-mapping ϕ on the unit disk, the composition operator Cϕ :
H → H is defined by

Cϕ(f) = f ◦ ϕ.
It is well-known that the composition operator is bounded on the Hardy
space H2 and (

1

1− |ϕ(0)|2

)1/2

≤ ‖Cϕ‖ ≤
(

1 + |ϕ(0)|
1− |ϕ(0)|

)1/2

.

For a function ψ ∈ H, the weighted composition operator Cψ,ϕ : H → H is
defined by

Cψ,ϕ(f) = ψ · f ◦ ϕ.
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In the same manner we define the operator Dϕ : H → H by

Dϕ(f) = f ′ ◦ ϕ.
According to [5, Corollary 3.2], for a univalent self-map ϕ of the unit disk,
the operator Dϕ on the Hardy space H2 is bounded if and only if

sup
z∈D

1− |z|
(1− |ϕ(z)|)3

<∞.

Moreover, the operator Dϕ on H2 is compact if and only if

lim
|z|→1

1− |z|
(1− |ϕ(z)|)3

= 0.

Now, let ψ be an analytic function on the unit disk, and define the weighted
composition-differentiation operator Dψ,ϕ : H → H by the following rela-
tion:

Dψ,ϕ(f) = ψ · f ′ ◦ ϕ.
Our goal in this paper is to study the relationships between convergence of
the sequence of operators Dψn,ϕn in operator topologies from one hand, and
the convergence of the sequences of functions ψn and ϕn on the other hand.
G. Gunatillake’s paper [3] studied the relationship between convergence of
weighted composition operators Cψn,ϕn , and the convergence of {ψn} and
{ϕn}. This result was extended by S. Mehrangiz and B. Khani-Robati
[4] to generalized weighted composition operators on Bloch type spaces.
Here we intend to generalize Gunatillake’s result to weighted composition-
differentiation operator Dψ,ϕ in the setting of classical Hardy spaces. More
specifically, let B(H2) denote the Banach algebra of all bounded linear op-
erators on the Hilbert space H2. It is rather well-known that the dual space
of B(H2) is too big, so that the weak and weak-star topology of this space
is not so clear. For this reason, it is customary to equip this space with
the weak operator topology, the strong operator topology, and the uniform
operator topology. We intend to have a characterization of the convergence
of Dψn,ϕn to Dψ,ϕ with respect to operator topologies in terms of the con-
vergence of ϕn → ϕ and ψn → ψ in the weak and strong operator topologies
of H2.

2. Preliminaries

Let f be an analytic function in the unit disk D. The function f is said
to belong to the Hardy space H2 if

‖f‖2 = sup
0≤r<1

1

2π

∫ 2π

0
|f(reiθ)|2dθ <∞.

It is easy to see that for an analytic function f(z) =
∑∞

n=0 anz
n, the norm

of f in H2 is given by

‖f‖2 =
∞∑
n=0

|an|2.
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It is well-known that for f ∈ H2, the radial limit

f∗(eiθ) := lim
r→1−

f(reiθ) = lim
r→1−

fr(e
iθ)

for almost every θ ∈ [0, 2π] exists. The function f∗ is known as the radial
function of f . The space H2 is a functional Hilbert space, and its inner
product is given by

〈f, g〉 =
1

2π

∫ 2π

0
f∗(eiθ)g∗(eiθ)dθ.

Since the evaluation functionals are bounded, the Hardy space is a repro-
ducing kernel Hilbert space; this means that for each w ∈ D, there is a
function

Kw(z) =
1

1− wz
∈ H2

such that every f ∈ H2 has the following representation

f(w) = 〈f,Kw〉 =
1

2π

∫ 2π

0
f∗(eiθ)K∗w(eiθ)dθ.

It is also well-known that the functional w 7→ f ′(w) is bounded on H2 ([?,
Theorem 2.16]). It then follows from the Riesz representation theorem that

there is a function K
(1)
w ∈ H2 such that

f ′(w) = 〈f,K(1)
w 〉, f ∈ H2.

It turns out that (see [2])

K(1)
w (z) =

z

(1− wz)2
, (z, w) ∈ D× D.

In [1], we have proved the following theorems on the convergence in weak
operator topology and strong operator topology.

Theorem 2.1. [1] Let {ϕn}n≥1 and ϕ be analytic self-maps of the unit disk
such that ‖ϕn‖∞ < 1, and let {ψn}n≥1 and ψ be elements in H2. Assume
that each Dψn,ϕn is bounded, and that Dψ,ϕ is a bounded nonzero operator
on H2. Then Dψn,ϕn converges to Dψ,ϕ in weak operator topology if and
only if
(a) ψn converges weakly to ψ in H2,
(b) ϕn converges weakly to ϕ in H2,
(c) supn ‖Dψn,ϕn‖ <∞.

Theorem 2.2. [1] Let {ϕn}n≥1 and ϕ be analytic self-maps of the unit disk
such that ‖ϕn‖∞ < 1, and let {ψn}n≥1 and ψ be elements in H2 where ψ is
nonzero. Assume that each Dψn,ϕn and Dψ,ϕ are bounded operators on H2

where Dψ,ϕ is nonzero. Then Dψn,ϕn converges to Dψ,ϕ in strong operator
topology if and only if
(a) ψn converges to ψ in H2,
(b) ϕn converges to ϕ in H2,
(c) supn ‖Dψn,ϕn‖ <∞.
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The following result whose proof will not be given here complements the
above theorems. We use the notation H2

0 = {f ∈ H2 : f ′ ∈ H2}.

Theorem 2.3. Let {ϕn}n≥1 and ϕ be analytic self-maps of the unit disk
such that sup ‖ϕn‖∞ < 1, and let {ψn}n≥1 and ψ be elements in H2

0 where
ψ is nonzero and bounded. If Dψn,ϕn converges to Dψ,ϕ in strong operator
topology of H2

0 , then Dψn,ϕn converges to Dψ,ϕ in uniform operator topology
of H2

0 .
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Abstract. In this paper we investigate the notions of P−convex and
strongly P−convex functions defined on convex subsets of unit semi-
sphere R3. Some versions of Hermite-Hadamard inequality are given in
this setting.

1. Introduction

The Hermite-Hadamard inequality for a convex function f : I → R,

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a
f(x)dx ≤ f(a) + f(b)

2
. (1.1)

I ⊂ R, has received renewed attention by many authors [3]. Many particular
cases in several variables have been investigated by S.S. Dragomir in [5, 6].
Some improvements of 1.1 are studied in [4, 8]. The study of convex set and
functions in semisphere, has several more accurate results and applications
(see [9, 10]). Let us recall some of notions and results from differential
geometry often used in what follows, see [1, 7] and references therein. A
subset S of the unit sphere S2 := {(x1, x2, x3) ∈ R3|x21 +x22 +x23 = 1}, called
convex if any two points x, y ∈ S can be joined by a unique minimizing
geodesic whose image belongs to S. Let S be a nonempty convex subset of
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S2. A function f : S → R is said to be quasiconvex if for every x, y ∈ S and
every t ∈ [0, 1],

f(γ(t)) ≤ max{f(x), f(y)}, (1.2)

where γ : [0, 1]→ S is the unique minimal geodesic in S with γ(0) = x and
γ(1) = y.

For every p, q ∈ S2 with ω := arccos〈p, q〉 = d(p, q) < π( d is called
the intrinsic distance or Riemannian distance on S2), the unique minimal
geodesic in S2 joining p and q is given by the following formula

γ(t) =
sin((1− t)ω)

sinω
p+

sin(tω)

sinω
q, t ∈ [0, 1]. (1.3)

Let M ⊆ R3 be a 2-surface and f : M → R be an integrable function. If
F : D →M is a C1 parametrization of M , where D is an open subset of R2

in uv−plane then, the surface integral of f on R := F (D) ⊆ M is defined
by ∫

R
fds :=

∫ ∫
D
f(F (u, v))‖∂F

∂u
× ∂F

∂v
‖dudv.

Note that, the surface integral does not depend on parametrization. Recall
the following result from [2].

Lemma 1.1. Let 0 < ω0 < π. Then, for every 0 ≤ θ < 2π the curve

αθ(ϕ) := (sinϕ cos θ, sinϕ sin θ, cosϕ), ϕ ∈ [0, ω0],

is the unique minimal geodesic from p̃ := (0, 0, 1) to

q := (sinω0 cos θ, sinω0 sin θ, cosω0).

The Hermite-Hadamard inequality for a convex function on semisphere
is investigated in [2]. Our goal in this paper is to establish an analogue
of the Hermite-Hadamard inequality for P−convex and strongly P−convex
functions defined on semisphere of S2.

2. P−convexity and Hermite-Hadamard inequality

In this section the Hermite-Hadamard inequality for P−convex and strongly
convex functions on hemispheres is considered.

Definition 2.1. Let S be a nonempty convex subset of S2 and f : S → R+

be a real valued function, R+ := [0,+∞]. Then,
(i) f is said to be P−convex (or belong to the class P (I)) if it is nonnegative
and for every x, y ∈ S and every t ∈ [0, 1],

f(γ(t)) ≤ f(x) + f(y), (2.1)

(ii) f is said to be strongly P−convex if it is nonnegative and there exists a
constant c > 0 such that for every x, y ∈ S and every t ∈ (0, 1),

f(γ(t)) ≤ f(x) + f(y)− ct(1− t)d2(x, y), (2.2)

where γ : [0, 1]→ S is the unique minimal geodesic in S with γ(0) = x and
γ(1) = y.
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It is easy to see that P (I) contain all non-negative convex and quasiconvex
functions defined on proper convex subsets of sphere are P−convex. In the
following example we introduce a P−convex function defined on a convex
subset of S2 which is not quasiconvex.

Example 2.2. Define the non-negative function f : C → R as

f(x) := 2ϕ2
0 − d2(x, p̃),

where C := B(p̄, ϕ0), 0 < ϕ0 < π/2. Then, f is a P−convex function C
which is not quasiconvex on C.

Now we are in a position to establish the Hermite-Hadamard inequality
for P−convex functions defined on the semispheres of S2.

Theorem 2.3. Let that f : C → R be a P−convex integrable function.
Then, the following inequalitiy holds

f(p̃) ≤ 2

area(C)

∫
C
fds ≤ 2f(p̃) +

1

π sinϕ0

∫
∂C
f(σ(τ))dτ, (2.3)

where σ is the parametrization of ∂C by arc length and C := B(p̄, ϕ0).

Next result is an improvement of lemma 2.2 in[2] for strongly P−convex
functions.

Theorem 2.4. Let S be a convex subset of S2 and q ∈ S2. Suppose that
f : S → R is a real valued function. Then, f is strongly P−convex on
S with constant λ > 0 if and only if for every x ∈ S the function z 7→
f(z)− λd2(z, x) is P−convex on S.

The following establish a version of Hermite-Hadamard inequality for
strongly P−convex functions.

Theorem 2.5. Let that f : C → R be a strongly P−convex integrable
function with constant λ > 0. Then, the following inequalitiy holds

g(p̃) ≤ 2

area(C)

∫
C
gds ≤ 2g(p̃) +

1

π sinϕ0

∫
∂C
g(σ(τ))dτ, (2.4)

where σ is the parametrization of ∂C by arc length, g(z) := f(z)−λd2(z, x)
and C := B(p̄, ϕ0)..
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Abstract. In this paper, we show Sandor type inequality for pseudo-
integrals. Indeed, we state classic version of this inequality for pseudo-
integrals. Some illustrate examples are given for theorems.

1. Introduction

The theory of fuzzy measures and fuzzy integral (Sugeno integral) has in-
troduced by Sugeno [6] in his Ph.D. theses on 1974. From 2007, some authors
have studied on some others fuzzy integral inequalities. Pseudo-analysis is a
generalization of the classical analysis, where instead of the field of real num-
bers a semiring is taken on a real interval [a, b] ⊆ [−∞,+∞] endowed with
pseudo-addition ⊕ and with pseudo-multiplication �. Recently, Daraby et
al. generalized Stolarsky, Hardy and Feng Qi type inequalities for pseudo-
integrals ([2, 3, 4]).
Sandor’s inequality in classical case is the following form.

Theorem 1.1. [1] Let f : [a, b]→ R be a convex and non-negative function.
Then

1

b− a

∫ b

a
f2(x)dx ≤ 1

3

[
f2(a) + f(a)f(b) + f2(b)

]
, (1.1)
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holds.

2. Preliminary

Now, we are going to review some well known results of pseudo-operations,
pseudo-analysis and pseudo-additive measures and integrals in details.

Let [a, b] be a closed (in some cases can be considered semi-closed) subin-
terval of [−∞,∞]. The full order on [a, b] will be denoted by �.

Definition 2.1. The operation ⊕ (pseudo-addition) is a function ⊕ : [a, b]×
[a, b] → [a, b] which is commutative, non-decreasing (with respect to � ),
associative and with a zero (neutral) element denoted by 0, i.e., for each
x ∈ [a, b],0⊕ x = x holds (usually 0 is either a or b).

Let [a, b]+ = {x|x ∈ [a, b],0 � x}.

Definition 2.2. The operation � (pseudo-multiplication) is a function � :
[a, b] × [a, b] → [a, b] which is commutative, positively non-decreasing, i.e.,
x � y implies x � z � y � z for all z ∈ [a, b]+, associative and for which
there exists a unit element 1 ∈ [a, b], i.e., for each x ∈ [a, b],1� x = x.

We shall consider the semiring ([a, b],⊕,�) for two important (with com-
pletely different behavior) cases. The first case is when pseudo-operations
are generated by a monotone and continuous function g : [a, b] → [0,∞),
i.e., pseudo-operations are given with:

x⊕ y = g−1(g(x) + g(x)) and x� y = g−1(g(x)g(x)). (2.1)

Then, the pseudo-integral for a function f : [c, d] → [a, b] reduces on the
g−integral ∫ ⊕

[c,d]
f(x)dx = g−1

(∫ d

c
g(f(x))dx

)
. (2.2)

The second class is when x⊕ y = max(x, y) and x� y = g−1(g(x)g(y)), the
pseudo-integral for a function f : R→ [a, b] is given by∫ ⊕

R
f � dm = sup

x∈R
(f(x)� ψ(x)) ,

where function ψ defines sup-measure m. We denote by µ the usual Lebesgue
measure on R. We have

m(A) = ess supµ(x|x ∈ A) = sup {a|µ(x|x ∈ A, x > a) > 0} .

Theorem 2.3. Let m be a sup-measure on ([0,∞],B[0,∞]), where B([0,∞])
is the Borel σ-algebra on [0,∞], m(A) = ess supµ(ψ(x)|x ∈ A), and ψ :
[0,∞] → [0,∞] is a continuous function. Then for any pseudo-addition ⊕
with a generator g there exists a family mλ of ⊕λ-measure on ([0,∞],B),
where ⊕λ is a generated by gλ (the function g of the power λ, λ ∈ (0,∞))
such that lim

λ→∞
mλ = m.
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Theorem 2.4. Let ([0,∞], sup,�) be a semiring , when � is a generated
with g, i.e., we have x � y = g−1(g(x)g(y)) for every x, y ∈ (0,∞). Let
m be the same as in Theorem 2.3, Then there exists a family {mλ} of ⊕λ
-measures, where ⊕λ is a generated by gλ, λ ∈ (0,∞) such that for every
continuous function f : [0,∞]→ [0,∞],∫ sup

f � dm = lim
λ→∞

∫ ⊕λ

f � dmλ = lim
λ→∞

(gλ)−1
(∫

gλ(f(x))dx

)
. (2.3)

3. Main Results

In this section, we express Sandor’s inequality for pseudo-integrals.

Theorem 3.1. Let f : [a, b] → [c, d] be a continuous, convex and non-
negative function and g : [c, d] → [0,∞) be a continuous and increasing
function. Then(

1

b− a

)
g

(∫ ⊕
[a,b]

f2�(x)dx

)
≤ 1

3
g

([
f2�(a)⊕ f(a)� f(b)⊕ f2�(b)

])
, (3.1)

holds.

Corollary 3.2. Let f : [0, 1] → [c, d] be a continuous, convex and non-
negative function and g : [c, d] → [0,∞) be a continuous and increasing
function. Then(

1

b− a

)
g

(∫ ⊕
[0,1]

f2�(x)dx

)
≤ 1

3
g
[
f2�(0)⊕ f(0)� f(1)⊕ f2�(1)

]
, (3.2)

holds.

Example 3.3. Let f and g are defined from [0, 1] to [0, 1] by f(x) = x2 and
g(x) =

√
x. Then we have

1

4
=

1

1− 0

∫ ⊕
[0,1]

f2�(x)dx ≤ 1

3
g
[
f2�(0)⊕ f(0)� f(1)⊕ f2�(1)

]
=

1

3
.

We can not remove the assumption g is increasing in Theorem 3.1. The
following example shows this fact.

Example 3.4. Let f(x) =
√
x and g(x) =

√
1− x. Then we have

5

6
=

1

1− 0

∫ ⊕
[0,1]

f2�(x)dx �
1

3
g
[
f2�(0)⊕ f(0)� f(1)⊕ f2�(1)

]
=

1

3
.

Theorem 3.5. Let f : [a, b] → [a, b] be a measurable comonotone function
and ([a, b], sup,�) be a simiring and m be the same as Theorems 2.3 and 2.4.
If g is the continuous and increasing function, then the following inequality
is holds(

1

b− a

)
g

(∫ sup

[a,b]
f2�(x)dx

)
≤ 1

3
g
[
f2�(a)⊕ f(a)� f(b)⊕ f2�(b)

]
, (3.3)

holds.
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Abstract. The uncertainty theory from the viewpoint of Liu is a new
way to deal with problems which some of parameters are not deter-
minate. Especially, this theory is based on experts belifes and by in-
troducing a measure in these belifes tries to overcome to uncertainty.
Maximum weighted independent set problem is a classic combinatorial
optimization problem and has wide range of application such as schedul-
ing. It is proved that this is an NP-hrad problem and for arbitary graph,
there are only approximate algorithms. In this paper, we investigate this
problem with indeterministic weights and obtain an equivalant deminis-
tic integer programming model. Considering the concept of uncertainty
distribution of an uncertain variable, one models is constructed based
on α-chance method.

1. Introduction

When a real-world problem is modeled, the data are usualy considered in-
determinate. In these situations, probability theory, fuzzy theory and theory
of belief functions, also referred to as evidence theory or were introduced but
unfortunatelly, these theories are not cover all problems. Recently, Baoding
Liu proposed an axiomatic basis of uncertainty theory in 2007 [4] and refined
it [5] in 2010. In this theory, the belifes of experts have essential role. In this
paper, First, an integer programming model is presented for the maximum
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weighted independent set problem and a summary of uncertainty theory is
explained and one model is discussed to solve this problem when the weights
are uncertain.

2. An Integer Programming Model

max
∑

i∈V wixi
s.t. xi + xj ≤ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1}.
(2.1)

As already mentioned previously, the problem (2.1) is an NP-hard and no
algorithm can find a solution in polynomial time unless P=NP. For obtaining
an approximate solution of this model, semidefinite or linear relaxation is
utilized. In the next section, a summary of the of uncertainty theory will be
expressed from the viewpoint of Liu.

3. Uncertainty Theory

As already mentioned, uncertainty theory can be a potential tool for
expressing experts’ beliefs in mathematical language and using them. In
this section, we point out some important concepts and features of this
theory. For more details, refer the reader to [5].

Let Γ be a nonempty set and L be a σ-algebra over it . Then (Γ,L)
is called measurable space and each member Λ ∈ L is called a measurable
set or an event. Measurable space (Γ,L) with uncertain measure M (this
concept will be introduced later) is saied uncertainty space and is shown by
(Γ,L,M). A set functionM over L is said to be an uncertain measure if it
satisfies the following four axioms:

Axiom1 : (Normality) M{Γ}=1 for the universal set Γ.
Axiom2 : (Duality) M{Λ}+M{Λc}=1 for any event Λ.
Axiom3 : (Subadditivity) For every countable sequence of events Λ1,Λ2, . . .

M
{ ∞⋃

i=1

Λi

}
≤
∞∑
i=1

M{Λi}.

Axiom4 : (Product) Let (Γk,Lk,Mk) be uncertainty spaces for integer k ≥ 1.
The product uncertain measure M is the one satisfying

M
{ ∞∏

k=1

Λk

}
=

∞∧
k=1

Mk{Λk},

where Λk are arbitrarily chosen events from Lk for k = 1, 2, . . . re-
spectively and

∧
stands for the minimum operator.

The function f : (Γ,L,M) → R is said to be measurable if for any
Borel set B of real numbers, it holds f−1(B) = {γ|f(γ) ∈ B} ∈ L. An
uncertain variable ξ is a measurable function on an uncertainty space. Also,
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ξ is considered nonegative if M{ξ < 0} = 0 and positive if M{ξ ≤ 0} =
0. The next theorem talks about a fundamental and practical property in
uncertainty theory.

Theorem 3.1. [5] Let ξ1, ξ2, . . . , ξn be uncertain variables. Further, let f
be a real valued measurable function. Then f(ξ1, ξ2, . . . , ξn) is an uncertain
variable.

For an uncertain variable ξ, uncertainty distribution Φ is defined as Φ(x) =
M{ξ ≤ x}. Different type of uncertain variables have been defined in the
literature corresponding to different uncertainty distributions.

Definition 3.2. The uncertain variables ξ1, ξ2, . . . , ξn are said to be inde-
pendent if

M
{ n⋂

i=1

(ξi ∈ Bi)

}
=

n∧
i=1

M{ξi ∈ Bi},

for any Borel sets B1, B2, . . . , Bn.

Theorem 3.3. [5] Let ξ1, ξ2, . . . , ξn be independent uncertain variables with
regular uncertainty distributions Φ1,Φ2, . . . ,Φn, respectively. If f is a strictly
increasing function, then the uncertain variable ξ = f(ξ1, ξ2, . . . , ξn) has the
inverse uncertainty distribution

Φ−1(α) = f(Φ−11 (α),Φ−12 (α), . . . ,Φ−1n (α)).

In some cases, validity of an equality is not determined and α-chance
model can be a useful interpretation for such situations. It is said that
an equality g(x, ξ) ≤ 0 holds with the belief degree α when M{g(x, ξ) ≤
0} ≥ α. Determining the feasible region associated to such constraints in
higher dimensional spaces is not straightforward. Next theorem presents an
equivalent crisp constraint in specific circumstances.

Theorem 3.4. [5] Let g(x, ξ1, ξ2, . . . , ξn) be a strictly increasing function
with respect to ξ1, . . . , ξk, and strictly decreasing with respect to ξk+1, . . . , ξn.
Further, let ξ1, . . . , ξn be independent uncertain variables with uncertainty
distributions Φ1, . . . ,Φn, respectively. Then the relationM{g(x, ξ1, ξ2, . . . , ξn) ≤
0} ≥ α holds if and only if

g(x,Φ−11 (α), . . . ,Φ−1k (α),Φ−1k+1(1− α), . . . ,Φ−1n (1− α)) ≤ 0.

In this section, the model (2.1) is investigated when it’s wheights are
uncertain variables ξi.

max
∑

i∈V ξixi
s.t. xi + xj ≤ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1}.
=⇒

max t
s.t. t ≤

∑
i∈V ξixi

xi + xj ≤ 1 ∀(i, j) ∈ E,
xi ∈ {0, 1}.

(3.1)
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max t
s.t. M{t ≤

∑
i∈V ξixi} ≥ α

xi + xj ≤ 1 ∀(i, j) ∈ E,
xi ∈ {0, 1}.

=⇒

max t
s.t. t ≤

∑
i∈V Φ−1i (α)xi

xi + xj ≤ 1 ∀(i, j) ∈ E,
xi ∈ {0, 1}.

(3.2)

Finaly, by using theorem 3.3, the following deterministic model, is achieved.

max
∑

i∈V Φ−1i (α)xi
s.t. xi + xj ≤ 1 ∀(i, j) ∈ E,

xi ∈ {0, 1}.
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Abstract. In this paper, one of the most famous NP-complete prob-
lems in graph theory, the total dominating set problem, was investigated
and a new quadratic integer programming model was presented. Finally,
an SDP relaxation models are proposed. Finding the efficiency of the
relaxation could be a future research direction.

1. Introduction

Consider an undirected and connected graph G = (V,E), where V =
{v1, . . . , vn} and E are respectively vertices and edges of G. The degree of
vertex vi is shown by deg(vi) , and ∆ stands for the maximum degree of
the graph. A set S ⊆ V is called dominating set of G if each vertex is a
member of S or adjacent to a member of S. The set S is referred to as
minimum dominating set if it has minimum cardinality among all dominat-
ing sets. The cardinality of minimum dominating set is called domination
number and denoted by γ(G). Domination number and its variations have
been extensively studied in the literature. One of them is total domination
number. A set St of vertices in a graph G is called a total dominating set
if every vertex vi ∈ V is adjacent to an element of st. The size of total
dominating set with minimum cardinality is denoted by γt(G). For more
details we refer the reader to [9].
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Dominating set and its variants are one of the classical problems in graph
theory having important applications in many fields (e.g. [3, 4] for some
recent applications). In [8], more than 1200 papers on different versions
of dominating set problem are listed. Despite having a lot of application
and theoretical attraction, Unfortunately, in [5] it has been shown the NP-
completeness of dominaing set problem and subsequently the total dominat-
ing set problem. So, for any arbitary graph , it is not expected that the total
dominating set will be found in reasonable time. To overcome to this chal-
lenge, there are several methods such linear relaxation, Greedy Algorithms
and metaheuristics. In this paper, the semidefinite relaxation is applied to
find an approximation solution for the total dominating set problem.
The semidefinite programming is a special case of convex optimization which
linear objective function is optimized over the intersection of the cone of pos-
itive semidefinite matrices with linear constraints. Let Sn denote the set of
symmetric n×n real matrices. The cone of symmetric positive semidefinite
(definite) matrices is denoted by Sn+ (Sn++ ). B−D � 0 ( B−D � 0 ) means
that (B − D) is positive semidefinite (definite). Suppose that A1, . . . , Am

are linearly independent matrices in Sn; C ∈ Sn and b ∈ Rm. The standard
form of semidefinite programming problem is written as follows:

min 〈C,X〉
s.t. 〈Ai, X〉 ≥ bi i = 1, 2, . . . , n

X � 0

where 〈B,D〉 = tr(BtD) =
∑

i,j bijdij . The semidefinite programming

model can be solved in a polynomial time with an interior point method [1].
The interested reader is referred to [2] for a thorough discussion and appli-
cations of semidefinite programming. semidefinite programming relaxation
is a powerful tool to approximate the optimal solution of some combinato-
rial problems. For example, dominating set [6] and maximum cut [7]. The
good performance of semidefinite relaxation in these problems encouraged
us to utilize this method to find an approximation of the k-tuple domination
number.

2. Problem Description

The open neighborhood of a vertex v consists of the set of adjacent vertices
to v, that is, N(v) = {w ∈ V |wv ∈ E} and the closed neighborhood of is
defined as N [v] = N(v) ∪ {v}. The following labelling can be defined on V
with respect to a subset S ⊆ V as:

y(vi) =

{
1 v ∈ S
−1 v /∈ V

For the sake of simplicity, we denote y(vi) by yi and refer to a vertex with
the label 1 as (+1)-vertex and as (-1)-vertex, otherwise. Further, N(i)(N [i])
stands for the open (closed) neighborhood of the vertex vi. It is important
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to mention that a vertex in a total dominating set St is a (+1)-vertex in-
duced by St. From the definition of labelling, it is clear that the objective
function is 1

2

∑n
i=1(1 + yi). The next lemma gives us valid inequlities for

total dominating set.

Lemma 2.1. St ⊆ V is total dominating set if and only if it must satisfy
in the following inequalities:

∑
j∈N(i)

(1− yiyj) +
∑

j∈N [i]

1 + yj
2
≥ 2 i = 1, 2, . . . , n. (2.1)

Now, based on the (2.1), the quadratic integer programming model can be
written as follows:

min 1
2

∑n
i=1(1 + yi)

s.t.
∑

j∈N(i)(1− yiyj) +
∑

j∈N [i]
1+yj
2 ≥ 2 i = 1, 2, . . . , n

yi ∈ {−1,+1} i = 1, 2, . . . , n

(2.2)

Observe that the objective functions of (2.2) and part of inequalities are
linear, while analyzing of our algorithms needs a quadratic objective func-
tion. To convert these linear functions to quadratic ones, a reference variable
y0 ∈ {−1,+1} is introduced and problem (2.2) is rephrased as follows:

min 1
2

∑n
i=1(1 + y0yi)

s.t.
∑

j∈N(i)(y
2
0 − yiyj) +

∑
j∈N [i]

y20+y0yj
2 ≥ 2 i = 1, 2, . . . , n

yi ∈ {−1,+1} i = 0, 1, 2, . . . , n

(2.3)

Now suppose y = (y0, y1, . . . yn) be the optimal solution of (2.3). If y0 = +1
then y = (y1, . . . yn) is the optimal solution of (2.2) and if y0 = −1 then
y = (−y1, . . .− yn) is the optimal solution of (2.2).

3. Semidefinite Relaxation

First, for i = 0, 1, . . . , n, the variable yi is substituted by an (n + 1)-
dimensional vector ui ∈ U where U = {(+1, 0, . . . , 0), (−1, 0, . . . , 0)}. Ac-
cordingly, the restriction yi ∈ {−1,+1} is replaced by ui ∈ U and then
problem (2.3) is adapted as:

min 1
2

∑n
i=1(1 + ut0ui)

s.t.
∑

j∈N(i)(u
t
0u0 − utiuj) +

∑
j∈N [i]

ut
0u0+ut

0uj

2 ≥ 2 i = 1, 2, . . . , n

uiU i = 0, 1, 2, . . . , n

(3.1)

Recall that ||ui = 1|| for ui ∈ U and this motivates to expand U to the
standard (n + 1)-dimensional unit sphere Sn+1 = {u ∈ Rn+1| ||u|| = 1}, at
the second step of the relaxation procedure. Thus, the following problem is
obtained

min 1
2

∑n
i=1(1 + ut0ui)

s.t.
∑

j∈N(i)(u
t
0u0 − utiuj) +

∑
j∈N [i]

ut
0u0+ut

0uj

2 ≥ 2 i = 1, 2, . . . , n

utiui = 1, ui ∈ Sn+1 i = 0, 1, 2, . . . , n

(3.2)
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By introducing Xij = yiyj , Eij = eie
t
j and Ai =

∑
j∈N(i)

1
2(2E00 − Eij −

Eji) +
∑

j∈N [i]
1
4(2E00 − E0j − Ej0), where ei is the i-th standard unit

vector of Rn+1, the model (3.2) is converted to the following:

min
n

2
+ 〈C,X〉

s.t. 〈Ai, X〉 ≥ 2 i = 1, 2, . . . , n
Xii = 1 i = 0, 1, 2, . . . , n
rank(X) = 1
X � 0

(3.3)

where C = (cij), ci0 = c0i = 1
4 for i = 1, . . . , n and cij = 0 otherwise. By

dropping the nonconvex constraint rank(X) = 1 from (3.3), the semidefinite
relaxation is formulated as:

min
n

2
+ 〈C,X〉

s.t. 〈Ai, X〉 ≥ 2 i = 1, 2, . . . , n
Xii = 1 i = 0, 1, 2, . . . , n
X � 0

(3.4)

The model (3.4) can be solved by interior point methods in CVX solver.
Finally, the optimal solution of (3.4) just gives us a lower bound to total
domination number.
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Abstract. In this paper we apply fixed point theory and measure the-
ory to investigate the existence of unique solutions for integro differential
equations with reflection (IDE-R). Using almost automorphic functions,
we study the solutions of these equations, which are of pseudo almost
automorphic (PAA) type, by introducing the Mittag-Leffler function.
Finally, we present an example we illustrate the application of the main
results obtained.

1. Introduction

In the extensive research on differential equations in the literature, dif-
ferent unique solutions such as periodic, almost periodic, and automorphic
have been obtained for these equations and generalizations and ideas are
presented in different fields (also researchers considered weighted pseudo
almost periodic functions which is a generalization of pseudo almost period-
icity functions) [1, 2].

The main purpose in this paper is to investigate the existence of solu-
tions for the IDE-R, which is defined as follows (considering the continuous
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functions of k , ϕ : R3 → R and L : R+ → R+):

ψ′(w) = τψ(w) + κψ(−w) + h(w) + k(w , ψ(ϑ(w)), ψ(ϑ(−w))) (1.1)

+

∫ +∞

w
L(z − w)ϕ(z , ψ(ϑ(w)), ψ(ϑ(−w)))dw

+

∫ +∞

−w
L(z + w)ϕ(z , ψ(ϑ(z )), ψ(ϑ(−z )))dz , w ∈ R,

for τ ∈ R, κ ∈ R∗.

2. Basic concepts

Definition 2.1. For Banach space Y and every k ∈ C(R,Y), suppose
that (z`) is a real sequence. If there is a sub-sequence (z`k) such that
lim`k→∞ k (r + z`k) = k(r) and lim`k→∞ h (r − z`k) = k(r), then, k is said
to be almost automorphic or k ∈ AA(R,Y), for every r ∈ R.

Definition 2.2 ([3]). We consider a ζ-field Z as type Lebesque of R and
suppose M is the space of all positive measures on Z. Then η ∈M if

(1 ) η([τ, κ]) <∞, for all τ ≤ κ ∈ R,
(2 ) η(R) = +∞.

Definition 2.3 ([4]). Given the Banach space Y and the positive measure
η ∈ M, a function k : R → Y that is bounded continuous is called η-
ergodic, k ∈ E(R,Y, η), if lims→∞

1
η([−s,s])

∫
[−s,s] ‖k(w)‖dη(w) = 0, where

η([−s, s]) :=
∫ s
−s dη(r).

Definition 2.4 ([5]). Given the Banach space Y and the positive measure
η ∈ M, a function k : R → Y that is continuous is called η-PAA if k =
h1 + u1, where h1 is an almost automorphic function (h1 ∈ AA(R,Y)) and
u1 is an ergodic function.

To prove the main results of this paper, we consider the following hy-
potheses:

(N1) There exist a continuous and increasing function ϑ : R → R such
that for all v ∈ AA(R,R), we have voϑ ∈ AA(R,R).

(N2) For every γ ∈ R, there exist ϑ > 0 and a bounded interval J such
that for positive measure η, we have η({τ + γ : τ ∈ U}) ≤ ϑη(U),
whenever U ∈ Z satisfies U ∩ J = ∅.

(N3) There exist , ` > 0 such that for all U ∈ Z,

η(−U) ≤ + `η(U).

(N4) There is a function ρ : R → R+ such that for all E ∈ B(R), η ∈
M and ηϑ(E) = η

(
ϑ−1(E)

)
we have dηϑ(r) ≤ ρ(r)dη(r), ρ is also

continuous, strictly increasing and

lim sup
η[−P(a), P(a)]

η[−a, a]
Q(P(a)) < +∞,

where P(a) = |ϑ(a)|+ |ϑ(−a)| and Q(P(a)) = supr∈[−P(a),P(a)]ρ(P).
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(N5) Given ρ =
√
τ2 − κ2, where τ > κ, the following holds

D1(ρ, η) := sup
s>0

{∫ s

−s

∞∑
`=0

(−ρ(r + s))`

Γ(`α+ θ)
dη(r)

}
<∞,

and

D2(ρ, η) := sup
s>0

{∫ s

−s

∞∑
`=0

(−ρ(−r + s))`

Γ(`α+ θ)
dη(r)

}
<∞.

(N6) k : R× R2 → R has a Lipschitz coefficient Hk > 0 such that

|k (r , v1,w1)− k (r , v2,w2)| ≤ Hk (|v1 − v2|+ |w1 − w2|) ,

for all (v1,w1) , (v2,w2) ∈ R2.
(N7) ϕ : R× R2 → R has a Lipschitz coefficient Hϕ > 0 such that

|ϕ (r , ψ1, ψ2)− ψ (r ,z1,z2)| < Hϕ (|ψ1 −z1|+ |ψ2 −z2|) ,

for all ψ1, ψ2,z1,z2 ∈ R.
(N8) There exists L : R+ → R+ such that g =

∫ +∞
0 L(w)dw <∞.

To prove the results we consider two states for the Lipschitz coefficients of
the functions above. In one state (above) these coefficients are constant
and in the second state (below) they are not constant. In the following, we
express the necessary conditions according to the second state.

(N9) k : R × R2 → R has a Lipschitz function Hk ∈ Lp(R,R, dv) ∩
Lp(R,R, dη) such that

|k (r , v1,w1)− k (r , v2,w2)| ≤ Hk (r) (|v1 − v2|+ |w1 − w2|) ,

where η ∈M, p > 1 and for all (v1,w1) , (v2,w2) ∈ R2.
(N10) ϕ : R × R2 → R has a Lipschitz function Hϕ ∈ Lp(R,R, dv) ∩

Lp(R,R, dη) such that

|ϕ (r , v1,w1)− ϕ (r , v2,w2)| ≤ Hϕ(r) (|v1 − v2|+ |w1 − w2|) ,

where η ∈M, p > 1 and for all (v1,w1) , (v2,w2) ∈ R2.
(N11) There exists L : R+ → R+, such that∫ +∞

0
(L(w))γdw < +∞, for all γ > 1.

3. Existence of a unique η-PAA solution for equation (1.1) in
two-states

Theorem 3.1. Let k , ϕ ∈ PAP(R,R, η) and assume that (N4)-(N8), (N1)-
(N3) are satisfied. Then equation (1.1) has a unique η-PAA solution if

|ρ− τ |+ |ρ+ τ |+ 2|κ|
ρ(
∑∞

`=0
(ρr)`

Γ(`α+θ)

∑∞
`=0

(−ρ)`r`+1

(`+1)Γ(`α+θ))
(Hk + 2gHϕ) < 1.
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Theorem 3.2. Consider k , ϕ ∈ PAP(R×R2,R, η) and assume that condi-
tions (N1)-(N5) and (N9)-(N10) are satisfied. Then, equation (1.1) has a
unique η-PAA solution if

‖Hk‖Lp(R,R,dv) + 2

(∫ +∞

0
(L(w))q

) 1
q

‖Hϕ‖Lp(R,R,dv) <

∑∞
`=0

((−ρ)
1
q r)`

ρq
1
q Γ(`α+θ)

∑∞
`=0

(−ρ)
`
q r`+1

(`+1)Γ(`α+θ)

|ρ− τ |+ |ρ+ τ |+ 2|κ|
,

(3.1)

where 1
p + 1

q = 1.

Example 3.3. If we consider an equation of type (1.1) such that L(z ) =∑∞
`=0

(−|z |)`
Γ(α`+θ) for all z ∈ R+. In order for condition (N1) to be true,

we set ϑ(r) = 1
r+1 − e. By putting τ = 4, κ =

√
7, ρ =

√
τ2 − κ2 =

3, k(r , v ,w) = ϕ(r , v ,w) = 1
15

∑∞
`=0

(−|r |)`
Γ(α`+θ) [sin v + cos w ], p = q = 1

2 , α =

1, θ = 1 and ‖Hk‖L2(R,R,dv) = ‖Hϕ‖L2(R,R,dv) = 1
15 and ‖Hk‖L2(R,R,dη) =

‖Hϕ‖L2(R,R,dη) ≤
1
15

√
exp(1) condition (N7) is satisfiedn where Hk (r) =

Hϕ(r) = 1
15

∑∞
`=0

(−|r |)`
Γ(α`+θ) . Therefore

‖Hk‖L2(R,R,dv) + 2

(∫ +∞

0
(L(w))2dw

) 1
2

‖Hϕ‖L2(R,R,dv)

=

√
2 + 1

15
<

e18

|ρ− τ |+ |ρ+ τ |+ 2|κ|
=

e18

8 + 2
√

7
.

all the conditions of theorem 3.2 are satisfied and equation has a unique
η-PAP solution.
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Abstract. Let T and S be idempotent adjointable operators on the
Hilbert C∗-module H over a C∗-algebra A. We establish that if there
exist constants α1, α2 > 0 such that for all x ∈ R(T ) and y ∈ R(S)

|x+ y| ≥ α1|x| and |x+ y| ≥ α2|y|,

then R(T ) ∩ R(S) = {0} and R(T ) + R(S) is orthogonality comple-
mented submodule of H. We also show that if Π1,Π2 are idempotents
in L(E) such that R(Π1) ∩ R(Π2) = {0} and R(Π1) +R(Π2) is an or-
thogonally complemented submodule of E , Then R(Π1 + Π2) is closed
in E if and only if R(Π1 −Π2) is closed in E .
Acknowledgment. This is a joint work with Professors W. Luo, M.S.
Moslehian, Q. Xu, and H. Zhang.

1. Introduction

Let A be a C∗-algebra. A pre-Hilbert C∗-module H over A is a right
A-module equipped with a sesquilinear map 〈·, ·〉 : H×H → A satisfying:

(1) 〈x, x〉 ≥ 0, x ∈ X ; 〈x, x〉 = 0 if and only if x = 0.
(2) 〈x, y〉∗ = 〈y, x〉, x, y ∈ X .
(3) 〈x, ya〉 = 〈x, y〉a, x, y ∈ X , a ∈ A.

If the norm defined by ‖x‖2 = ‖〈x, x〉‖ for all x ∈ X is complete we say X is
a Hilbert C∗-module. Suppose that H and K are Hilbert C∗-modules. Let

2000 Mathematics Subject Classification. Primary 47A05; Secondary 47A30
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L(H,K) be the set of all maps T : H → K for which there is an application
T ∗ : H → K such that

〈Tx, y〉 = 〈x, T ∗y〉, x ∈ H, y ∈ K. (1.1)

With the abbreviation we denote by L(H,H) = L(H). We denote by R(T )
and N (T ) the range and nullity of an operator T , respectively. LetM be a
closed submodule of X . Then we set

M⊥ := {x ∈ X ; 〈x, y〉 = 0, y ∈M} .
We say that M is an orthogonally complemented submodule of X if X =
M +M⊥. A closed submodule M is not necessarily orthogonally comple-
mented. If T ∈ L(X ) has closed range, it is known that R(T ) and N (T )
are orthogonally complemented. The study of the properties of Hilbert C∗-
modules and also the investigation of the facts that have been established
in the Hilbert space and their generalization to the Hilbert C∗-module have
been of interest to mathematical researchers, for examples see [3, 5].
For each idempotent operator Π,

R(Π) ∩R(I −Π) = 0 and R(Π) +R(I −Π) = E . (1.2)

A problem is that if Π1 and Π2 are idempotent operator, then do we have
R(Π1) +R(Π2) is orthogonally complemented submodule? In the Hilbert
space case we have the classic criteria of closeness for the sum of a couple
of subspaces.

Theorem 1.1. [4, Propsitin 2.1],[1, Theorem 13] Let H1 and H2 be closed
subspaces of H. The following conditions are equivalent:

(1) H1 +H2 is closed;
(2) ‖P1P2 − PH1∩H2‖ < 1;
(3) H⊥1 +H⊥2 is closed;
(4) R((I − P1)P2) is closed;
(5) R(I − P1P2) is closed;

2. Main Results

Let M and N be subspaces of a Hilbert space H. Recall that the cosine
of angle between M and N defined as follows:

c0(M,N ) := sup
{
‖〈x, y〉‖ : x ∈M, y ∈ N , ‖x‖ ≤ 1, ‖y‖ ≤ 1

}
.

We have the following characterization in Hilbert spaces:

Theorem 2.1. [1, Theorem 12] The following statements are equivalent.

(1) c0(M,N ) < 1;
(2) M∩N = {0} andM+N is closed;
(3) There exist a constant α > 0 such that

‖x+ y‖ ≥ α1‖x‖ (x ∈M, y ∈ N ). (2.1)

In [2], it is defined the separated pair of the closed submodules of a Hilbert
C∗-modules.
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Definition 2.2. Let H and K be closed submodules of E . Then we say that
(H,K) is a separated pair if

H ∩K = 0 and H+K is orthogonally complemented in E . (2.2)

Now we give the following result.

Theorem 2.3. Let H and K be orthogonally complemented closed submod-
ules of E. The following statements are equivalent:

(i) (H,K) is a separated pair of orthogonally complemented submodules.
(ii) There are idempotents Π1 and Π2 in L(E) such that Π1Π2 = Π2Π1 =

0, R(Π1) = H and R(Π2) = K.
(iii) There is an idempotent Π ∈ L(E) such that R(Π) = H and K ⊆

N (Π).

Corollary 2.4. Let H and K be orthogonally complemented closed submod-
ules of E. Then (H,K) is a separated pair if and only if there exist constants
α1, α2 > 0 such that |x+ y| ≥ α1|x| and |x+ y| ≥ α2|y| (x ∈ H, y ∈ K).

Theorem 2.5. Let Π1,Π2 be idempotents in L(E) such that (R(Π1),R(Π2))
is a separated pair of orthogonally complemented submodules of E. Then
R(Π1 + Π2) is closed in E if and only if R(Π1 −Π2) is closed in E.

The following example shows that the separation condition in Theorem
2.5 is necessary.

Example 2.6. Let K be a separable Hilbert space and let T be a non closed
range operator on K. Let E = K ⊕ K and define idempotent operators Π1

and Π2 on E by

Π1 =

(
I 0
0 0

)
, Π2 =

(
I 0
T 0

)
.

Note that R(Π1) = K ⊕ 0 and R(Π2) = {x ⊕ Tx :∈ K}. Then R(Π1) +
R(Π2) = K ⊕R(T ). This shows that (R(Π1),R(Π2)) is not separated pair
of closed subspaces in E . Since R(Π1−Π2) = 0⊕R(T ), so R(Π1−Π2) is not
a closed subspace. Furthermore, the equation R(Π1+Π2) = {2x⊕Tx :∈ K}
yields that R(Π1 + Π2) is a closed subspace in E .

Acknowledgment. This is a joint work with Professors W. Luo, M.S.
Moslehian, Q. Xu, and H. Zhang.
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Abstract. We consider a fuzzy minimization problem and we show
that the value function associated with this problem is monotone and
convex.

1. Introduction

Throughout this paper, Rm denotes the m-dimensional Euclidean space
and F (R) denotes the set of all fuzzy subsets on R. A fuzzy subset of R
is a function u : R → [0, 1]. For each such fuzzy set u and r ∈ (0, 1], we
denote r-level set of u by [u]r = {x ∈ R : u(x) ≥ r}. the support of u is
denoted by suppu = {x ∈ R : u(x) ≥ 0} and the closure of the support of u

is [u]0 = {x ∈ R : u(x) ≥ 0}. Suppose that u ∈ F (R) satisfies the following
conditions:

(1) u is normal; that is, there is an x0 ∈ R with u(x0) = 1;
(2) u is a convex fuzzy set; that is, u((1 − r)x + ry) > min(u(x), u(y))

whenever x, y ∈ R and r ∈ [0, 1];
(3) u(x) is upper semi-continuous;

(4) [u]0 = {x ∈ R : u(x) > 0} is a compact set,
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Then u is called a fuzzy number. We use E to denote the fuzzy number
space.
For any a ∈ R, define a fuzzy number â by

â(x) =

{
1 if x = a,
0 if x 6= a.

Also

0̂(x) =

{
1 if x = 0,
0 if x 6= 0,

for any x ∈ R.
The addition, scalar multiplication and multiplication on E is defined by

(u+ v)(x) = sup
y+z=x

min[u(y), v(z)],

(λu)(x) =

{
u(λ−1x) if λ 6= 0,

0̂ if λ = 0

for u, v ∈ E, λ ∈ R.
For any ui ∈ E, i = 1, 2, ..., n, we call the ordered one-dimension fuzzy num-
ber class u1, u2, ..., un (i.e., the Cartesian product of one-dimension fuzzy
number u1, u2, ..., un) a n-dimension fuzzy vector, denote it as (u1, u2, ..., un),
and call the collection of all n-dimension fuzzy vectors (i.e., the Cartesian

product

n︷ ︸︸ ︷
E × E × ...× E) n-dimension fuzzy vector space, and denote it as

(E)n.

Definition 1.1. [1] Let C ⊆ Rm be a convex set. The fuzzy mapping
F : C → E is convex if and only if

F ((1− λ)x+ λy) ≤ (1− λ)F (x) + λF (y),

for every x, y ∈ C and λ ∈ [0, 1].

2. The Value Function

Definition 2.1. [1, 3] The matrix A = [aij ]p×m, i = 1, ..., p; j = 1, ...,m, is
a fuzzy matrix if its entries are fuzzy numbers, i.e. aij ∈ E. the operations
on fuzzy matrices are defined by operations between fuzzy numbers.

Let F : M ⊆ Rm → E be a fuzzy mapping and G : M ⊆ Rm → (E)k be k-
dimensional fuzzy vector-valued function. Consider the fuzzy minimization
problem

Fopt = min
x∈M
{F (x) : G(x) ≤ 0̂, Ax+B = 0̂} (2.1)

where G(x) = (G1(x), G2(x), ..., Gk(x)) and G1, G2, ..., Gk : M ⊆ Rm → E
are fuzzy number-valued functions and A,B are p×m, p×1 fuzzy matrices,
respectively.
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The value function associated with problem (2.1) is the function V : (E)k×
(E)p → E (see [2]) given by

V (u,w) = min
x∈M
{F (x) : G(x) ≤ u,Ax+B = w}. (2.2)

We can write the feasible set of (2.2) as follows

C(u,w) = {x ∈M : G(x) ≤ u,Ax+B = w}. (2.3)

The value function can be rewritten as

V (u,w) = min{F (x) : x ∈ C(u,w)}. (2.4)

3. Monotonicity and convexity of the value function

Theorem 3.1. Let F : M ⊆ Rm → E be a fuzzy mapping and G : M ⊆
Rm → (E)k be k-dimensional fuzzy vector-valued function, M ⊆ Rm a
nonempty set and A,B are p×m, p× 1 fuzzy matrices, respectively. Let V
be the value function given in (2.2). Then

V (u,w) ≥ V (t, w) for any u, t ∈ (E)k, w ∈ (E)p satisfying u ≤ t.

Proof. Take x ∈ C(u,w). Then from (2.3), we obtain that G(x) ≤ u ≤ t.
Therefore, x ∈ C(t, w). As a result C(u,w) ⊆ C(t, w). Now, by (2.4) we
obtain

V (u,w) ≥ V (t, w).

�

Theorem 3.2. Let F : M ⊆ Rm → E and G1, G2, ..., Gk : M ⊆ Rm → E be
convex fuzzy-valued functions, M ⊆ Rm a nonempty convex set and A,B are
p×m, p×1 fuzzy matrices, respectively. Then V is convex over (E)k×(E)p.

Proof. Let (u,w), (t, s) ∈ dom(v) and λ ∈ [0, 1]. To prove the convexity, we
will show that

V (λ(u,w) + (1− λ)(t, s)) ≤ λV (u,w) + (1− λ)V (t, s).

i.e.

V (λu+ (1− λ)t, λw + (1− λ)s) ≤ λV (u,w) + (1− λ)V (t, s).

By the definition of the value function (2.2), sequences (xk) ∈ C(u,w), (yk) ∈
C(t, s) exist such that

lim
k→∞

F (xk) = V (u,w) (3.1)

and
lim
k→∞

F (yk) = V (t, s). (3.2)

Since (xk) ∈ C(u,w) and (yk) ∈ C(t, s), we have G(xk) ≤ u,G(yk) ≤ t.
Therefore, by the convexity of G1, G2, ..., Gk,

G(λxk + (1− λ)yk) ≤ λG(xk) + (1− λ)G(yk) ≤ λu+ (1− λ)t. (3.3)

Also,

A(λxk+(1−λ)yk)+b = λ(Axk+b)+(1−λ)(Ayk+b) = λw+(1−λ)s. (3.4)
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Combining (3.3) and (3.4), we conclude that

λxk + (1− λ)yk ∈ C(λu+ (1− λ)t, λw + (1− λ)s). (3.5)

By the convexity of F,

F (λxk + (1− λ)yk) ≤ λF (xk) + (1− λ)F (yk). (3.6)

Now, According to (3.1), (3.2) and (3.6) we have

lim inf
k→∞

F (λxk + (1− λ)yk) ≤ λV (u,w) + (1− λ)V (t, s). (3.7)

By (3.5) and the definition of V ((2.2)), for all k,

V (λu+ (1− λ)t, λw + (1− λ)s) ≤ F (λxk + (1− λ)yk),

Therefore

V (λu+ (1− λ)t, λw + (1− λ)s) ≤ lim inf
k→∞

F (λxk + (1− λ)yk).

We combine the last inequality with (3.7) and obtain

V (λu+ (1− λ)t, λw + (1− λ)s) ≤ λV (u,w) + (1− λ)V (t, s),

establishing the convexity of V. �
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Abstract. We consider the class of cyclic (noncyclic) relatively nonex-
pansive mappings and study the structure of minimal invariant pairs in
(strictly convex) Banach spaces. Then we conclude a well-known best
proximity point (pair) theorem for such class of mappings.

1. Introduction

Let X be a Banach space and C ⊆ X. A mapping T : C → C is said to
be nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. It is well known
that if C is a nonempty, compact and convex subset of a Banach space X,
then any nonexpansive mapping of C into C has a fixed point.

In the case that C is weakly compact and convex subset of a Banach
space X, then the nonexpansive mapping T may not have a fixed point. If
C possesses normal structure, then the existence of a fixed point is guaran-
teed by Kirk’s fixed point theorem ([5]). We mention that every bounded,
closed and convex subset of a uniformly convex Banach space X has normal
structure.

Let A and B be two nonempty subsets of a normed linear space X. A
mapping T : A ∪ B → A ∪ B is said to be cyclic (noncyclic) provided that
T (A) ⊆ B, T (B) ⊆ A (T (A) ⊆ A, T (B) ⊆ B).
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In the case that T is cyclic a point x? ∈ A ∪ B is called a best proximity
point of T whenever

‖x? − Tx?‖ = dist(A,B) := inf{‖x− y‖ : x ∈ A, y ∈ B}.
Moreover, a point (p, q) ∈ A × B is said to be a best proximity pair of the
noncyclic mapping T if

p = Tp, q = Tq, ‖p− q‖ = dist(A,B).

A mapping T : A ∪ B → A ∪ B is said to be relatively nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖ whenever x ∈ A and y ∈ B.

To describe our results, we need some definitions and notations. We shall
say that a pair (A,B) of subsets of a Banach space X satisfies a property
if both A and B satisfy that property. For example, (A,B) is convex if and
only if both A and B are convex; (A,B) ⊆ (C,D) ⇔ A ⊆ C, and B ⊆ D.
We shall also adopt the notation

δx(A) = sup{d(x, y) : y ∈ A} for all x ∈ X,
δ(A,B) = sup{δx(B) : x ∈ A}.

The closed and convex hull of a set A will be denoted by con(A).

Definition 1.1. A Banach space X is said to be
(i) uniformly convex if there exists a strictly increasing function δ : (0, 2]→
[0, 1] such that the following implication holds for all x, y, p ∈ X,R > 0 and
r ∈ [0, 2R] : 

‖x− p‖ ≤ R,
‖y − p‖ ≤ R,
‖x− y‖ ≥ r

⇒ ‖x+ y

2
− p‖ ≤ (1− δ( r

R
))R;

(ii) strictly convex if the following implication holds for all x, y, p ∈ X and
R > 0 : 

‖x− p‖ ≤ R,
‖y − p‖ ≤ R,
x 6= y

⇒ ‖x+ y

2
− p‖ < R.

Lemma 1.2. ([1]) Let (K1,K2) be a pair of nonempty subsets of a normed
linear space X. Then

δ(K1,K2) = δ(con(K1), con(K2)).

Given (A,B) a pair of nonempty subsets of a Banach space, then its
proximal pair is the pair (A0, B0) given by

A0 = {x ∈ A : ‖x− y′‖ = dist(A,B) for some y′ ∈ B},
B0 = {y ∈ B : ‖x′ − y‖ = dist(A,B) for some x′ ∈ A}.

Proximal pairs may be empty but, in particular, if A and B are nonempty
weakly compact and convex then (A0, B0) is a nonempty weakly compact
convex pair in X.
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Definition 1.3. Let (A,B) be a nonempty pair in a Banach space X. Then
(A,B) is said to be a proximinal pair if A = A0 and B = B0.

Definition 1.4. Let (A,B) be a nonempty pair of sets in a Banach space
X. A point p in A (q in B) is said to be a diametral point with respect to
B (w.r.t. A) if δp(B) = δ(A,B) (δq(A) = δ(A,B)). A pair (p, q) in A×B is
diametral if both points p and q are diametral.

2. Minimal invariant pairs of relatively nonexpansive mappings

The following lemmas play important roles in our coming discussions.

Lemma 2.1. [2] Let (A,B) be a nonempty weakly compact convex pair
of a Banach space X and let T : A ∪ B → A ∪ B be a cyclic (noncyclic)
relatively nonexpansive mapping. Then there exists (K1,K2) ⊆ (A0, B0) ⊆
(A,B) which is minimal with respect to being nonempty closed convex and
T -invariant pair of subsets of (A,B) such that

dist(K1,K2) = dist(A,B).

Moreover, the pair (K1,K2) is proximinal.

Notation. Let (A,B) be a nonempty, weakly compact and convex pair in
a Banach space X and suppose T : A ∪ B → A ∪ B is a cyclic (noncyclic)
relatively nonexpansive mapping. By MT (A,B) we denote the set of all
nonempty, closed, convex, minimal and T -invariant pair (K1,K2) ⊆ (A,B)
such that dist(K1,K2) = dist(A,B).

Lemma 2.2. (Lemma 3.1 of [3]) Let (A,B) be a nonempty weakly compact
convex pair in a Banach space X and T : A ∪B → A ∪B a cyclic relatively
nonexpansive mapping. If (K1,K2) ∈ MT (A,B), then each pair (p, q) ∈
K1 ×K2 with ‖p− q‖ = dist(A,B) contains a diametral point (with respect
to (K1,K2)).

Lemma 2.3. (Lemma 3.8 of [3]) Let (A,B) be a nonempty weakly compact
convex pair of a strictly convex Banach space X. Let T : A ∪ B → A ∪ B
be a noncyclic relatively nonexpansive mapping. If (K1,K2) ∈ MT (A,B),
then each (p, q) ∈ K1 × K2 with ‖p − q‖ = dist(A,B) is a diametral pair
(with respect to (K1,K2)), that is,

δp(K2) = δq(K1) = δ(K1,K2).

3. Best proximity points (pairs)

Definition 3.1. Let (A,B) be a nonempty, weakly compact and convex pair
in a Banach space X and T : A∪B → A∪B be a cyclic (noncyclic) relatively
nonexpansive mapping. We say that the pair (A,B) has the H-property, if
for any (K1,K2) ∈MT ,

max{diam(K1), diam(K2)} ≤ δ(K1,K2).
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It was announced in [4] that if (A,B) is a nonempty, bounded, closed
and convex pair of subsets of a uniformly convex Banach space X and T :
A∪B → A∪B is a cyclic (noncyclic) relatively nonexpansive mapping, then
(A,B) has the H-property.

Definition 3.2. Suppose (A,B) is a nonempty, disjoint, weakly compact
and convex pair in a Banach space X and T : A ∪ B → A ∪ B is a cyclic
(noncyclic) relatively nonexpansive mapping such that (A,B) has the H-
property. Define

ωT := inf{max{diam(K1), diam(K2)}
δ(K1,K2)

: (K1,K2) ∈MT }.

It is clear that ωT ∈ [0, 1].

Proposition 3.3. ([4]) Let (A,B) be a nonempty, disjoint, bounded, closed
and convex pair of subsets of a uniformly convex Banach space X and T :
A ∪ B → A ∪ B be a cyclic (noncyclic) relatively nonexpansive mapping.
Then ωT = 0.

Theorem 3.4. ([4]) Let (A,B) be a nonempty, disjoint, weakly compact
and convex pair of subsets of a Banach space X and T : A ∪B → A ∪B be
a cyclic (noncyclic) relatively nonexpansive mapping. If ωT = 0, then has a
best proximity point (pair).

Corollary 3.5. ([2]) Let (A,B) be a nonempty, disjoint, bounded, closed
and convex pair of subsets of a uniformly convex Banach space X and T :
A ∪ B → A ∪ B be a cyclic (noncyclic) relatively nonexpansive mapping.
Then T has a best proximity point (pair).
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Abstract. Let H be a locally compact hypergroup with left invariant
Haar measure and let Lp(H), 1 ≤ p < ∞, be the complex Lebesgue
space associated with it. Let L∞(H) be the set of all locally measurable
functions that are bounded except on a locally null set, modulo functions
that are zero locally a.e. Let µ ∈ M(H). We want to find out when
µF ∈ L1(H) implies that F ∈ L1(H). Some necessary and sufficient
conditions is found for a measure µ for which if µF ∈ L1(H) for every
F ∈ L∞(H)∗, then F ∈ L1(H).

1. Introduction

Hypergroups are locally compact spaces whose bounded Radon measures
form an algebra which has similar properties to the convolution measures
algebra of a locally compact group. Locally compact hypergroups were
independently introduced around the 1970’s by Dunkl, Jewett and Spector.
They generalize the concepts of locally compact groups with the purpose of
doing standard harmonic analysis. For the theory of hypergroups and most
of the basic properties we refer to [2], [4] and [5].
Let H be a locally compact Hausdorff space. Let M(H) be the space of
complex-valued, regular Borel measures on H. We denote by M1(H) the
convex set formed by the probability measures on H. The support of a
measure µ is denoted by suppµ. Let C(H) be the space of all compact
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subsets of H. The triple (M(H),+, ∗) will be called a hypergroup if the
following conditions are satisfied.

(1) the vector space (M(H),+) admits a binary operation ∗ under which
it is an algebra,

(2) for x, y ∈ H, δx ∗ δy is a probability measure on H with compact
support,

(3) the mapping (x, y) 7→ δx ∗ δy of H ×H into M(H) is continuous,
(4) the mapping (x, y) 7→ supp(δx∗δy) ∈ C(H) is continuous with respect

to the Michael topology on the space C(H) of nonvoid compact sets
in H,

(5) there exists a unique e ∈ H such that for every x ∈ H, δe ∗ δx =
δx ∗ δe = δx,

(6) there exists a necessarily unique involution (a homeomorphism x 7→
x̃ of H onto itself with the property (x̃)̃ = x for all x ∈ H) such that

(δx ∗ δy )̃ = δỹ ∗ δx̃,
(7) for x, y ∈ H, e ∈supp(δx ∗ δy) if and only if x = ỹ.

In the following we will write just H instead of (M(H),+, ∗). It is still
unknown if an arbitrary hypergroup admits a left Haar measure. It par-
ticular, it remains unknown whether every amenable hypergroup admits a
left Haar measure. But all the known examples such as commutative hyper-
groups and central hypergroups do, for more information see [1] and [2]. In
this case, one can define the convolution algebra L1(H) with multiplication
f ∗ g(x) =

∫
f(x ∗ y)g(ỹ)dλ(y) for all f, g ∈ L1(H). Recall that L1(H) is

a Banach subalgebra and an ideal in M(H) with a bounded approximate
identity [2]. It should be noted that these algebras include not only the
group algebra L1(G) but also most of the semigroup algebras.

2. Main results

Let H be a hypergroup with left Haar measure λ. The first Arens product
on L∞(H)∗ is defined in stages as follows.
Let µ, ν ∈ L1(H), f ∈ L∞(H) and F,G ∈ L∞(H)∗;

(i) Define fµ ∈ L∞(H) by 〈fµ, ν〉 = 〈f, µ ∗ ν〉;
(ii) Define Ff ∈ L∞(H) by 〈Ff, µ〉 = 〈F, fµ〉;

(iii) Define GF ∈ L∞(H)∗ by 〈GF, f〉 = 〈G,Ff〉.
L∞(H)∗ is a Banach algebra, for more details see [3].

Theorem 2.1. Let H be a hypergroup with left Haar measure λ. Then the
following conditions are equivalent:

(i) there exists 0 6= µ ∈ L1(H) such that if F ∈ L∞(H)∗ and µF ∈
L1(H), then F ∈ L1(H);

(ii) H is discrete.

The following corollary is a direct consequence of theorem 2.1.
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Corollary 2.2. Let H be a compact hypergroup. Then the following condi-
tions are equivalent:

(i) there exists 0 6= µ ∈ L1(H) such that if F ∈ L∞(H)∗ and µF ∈
L1(H), then F ∈ L1(H);

(ii) H is finite.

Let H be a compact hypergroup. Let µ ∈ L1(H). The mapping x 7→
δx ∗ µ is weakly continuous. Since H is compact, {δx ∗ µ; x ∈ H} is rela-
tively weakly compact. By the Krein-Smulian theorem the closed, convex,
circled hull of {δx ∗ µ;x ∈ H} is also weakly compact. It follows that
{ν ∗ µ; ν ∈ L1(H), ‖ν‖ ≤ 1} is relatively weakly compact. It is easy to see
that {µF ;F ∈ L∞(H)∗, ‖F‖ ≤ 1} is relatively weakly compact. Suppose
that F ∈ {F ∈ L∞(H)∗; ‖F‖ ≤ 1} and {να} is a net in {ν ∈ L1(H); ‖ν‖ ≤ 1}
which converges to F in the weak∗-topology. Therefore {µ ∗ να} converges
to µF in the weak∗-topology. Passing to a subnet if necessary, we can as-
sume that {µ ∗ να} converges weak to a measure ν ∈ L1(H). Consequently
µF = ν ∈ L1(H).
The next corollary is an immediate consequence of above explanation.

Corollary 2.3. Let H be an infinite compact hypergroup. Then L1(H) is a
right ideal in L∞(H) and L1(H) is not reflexive.

Theorem 2.4. Let H be a hypergroup with left Haar measure λ. The fol-
lowing two properties of an element µ in M(H) are equivalent:

(i) if F ∈ L∞(H)∗ and µF ∈ L1(H), then F ∈ L1(H);
(ii) if {νn} is a bounded sequence in L1(H) such that {µ ∗ νn} is weakly

convergent, then {νn} contains a weakly convergent subsequence.

For a non-empty subset S of L1(H). The annihilator of S, denoted
Ann(S), is the set of all elements ν in L1(H) such that, for all µ in S,
µ ∗ ν = 0. In set notation,

Ann(S) = {ν ∈ L1(H);µ ∗ ν = 0 for all µ ∈ S}.
Proposition 2.5. Let H be a hypergroup with left Haar measure λ. The
following two properties of an element µ in M(H) are equivalent:

(i) if F ∈ L∞(H)∗ and µF ∈ L1(H), then F ∈ L1(H);
(ii) Ann(µ) is reflexive and µBS ⊆ µS for every closed subspace S of

L1(H).

Let C be the multiplicative group of all complex numbers. Let µ ∈M(C).
Consider the following assertions:

(i) if µF ∈ L1(C), then F ∈ L1(C);
(ii) ν ∈M(C) and µ ∗ ν ∈ L1(C) imply ν ∈ L1(C).

Clearly (i) impies (ii). Are the converse implication true?

Proposition 2.6. Assume that H is a commutative hypergroup. Let µ ∈
M(H), and let {µF ;F ∈ L∞(H)∗}+L1(H) be a dense subspace of L∞(H)∗.
If µF ∈ L1(H), then F ∈ L1(H).
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Proof. Let F ∈ L∞(H)∗ such that µF ∈ L1(H). Let G ∈ L∞(H)∗ and {να}
be a net in L1(H) such that να → G in the weak∗-topology [3]. We can
write

µFG = lim
α
µFνα = lim

α
να ∗ µF = GµF,

because H is commutative. This shows that µFG = GµF for all G ∈
L∞(H)∗. Fix G ∈ L∞(H)∗. By assumption, {µF ;F ∈ L∞(H)∗}+L1(H) is
a dense subspace of L∞(H)∗. Consequently, we can find sequences {Fn} ⊆
L∞(H)∗ and {µn} ⊆ L1(H) with {µFn+µn} norm-convergent to G. There-
fore

FG = lim
n
F (µFn + µn) = lim

n
FµFn + Fµn

= lim
n
µFnF + µnF = lim

n
(µFn + µn)F = GF.

Therefore FG = GF for all G ∈ L∞(H)∗. We next show that F ∈
Zt(L

∞(H)∗) = L1(H) [2]. Indeed, if {Gα} is a net in L∞(H)∗ and Gα → G
in the weak∗-topology, then

lim
α
〈FGα, f〉 = lim

α
〈GαF, f〉 = lim

α
〈Gα, Ff〉

= 〈G,Ff〉 = 〈GF, f〉,
for all f ∈ L∞(H). On the other hand, 〈GF, f〉 = 〈FG, f〉. Hence FGα →
FG (in the weak∗-topology) implies that F is in the topological center of
L∞(H)∗. This completes our proof. �

Recall that a basic sequence {xn} in a Banach spaceX is said to be bound-
edly complete if for each sequence of scalars {αn},

∑∞
n=1 αnxn is convergent

whenever sup{‖
∑n

i=1 αixi‖;n ∈ N} <∞.

Proposition 2.7. Let H be a hypergroup with a left Haar measure, and let
µ ∈M(H). Consider the following assertions:

(i) If {µn} is a basic sequence in B and
∑∞

i=1 ‖µ ∗µn‖ <∞, then {µn}
is boundedly complete;

(ii) F ∈ L∞(H)∗ and µF ∈ L1(H) imply F ∈ L1(H).

Then the implication (i)→ (ii) hold.
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Abstract. In this paper, we consider the gradient estimate of the fol-
lowing equation

∆u + au(log u)p + bu = f,

for some smooth function f and real constants a, b and we obtain an
upper bound for gradient of u. As an application we obtain the gradient

bound for the Riemannian manifold with Bakry-Émery Ricci curvature.

1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold with a fixed base
point O ∈M . Consider the following lower bound on the Ricci curvature

Ric +
1

2
LXg ≥ −λg, (1.1)

for some constant λ ≥ 0 and smooth vector field X which satisfies the
following condition:

|X|(y) ≤ K

d(y,O)α
, ∀y ∈M. (1.2)

Here d(y,O) reperesent the distance from O to y, K is a positive real con-
stant, and 0 ≤ α < 1.

2020 Mathematics Subject Classification. 53C99, 53C21
Key words and phrases. Gradient estimate, Ricci curvature, sobolev inequality.
∗ Speaker.

79



HAJIAGHASI∗AND AZAMI

In the pioneering work of Zhang and Zhu [3], they proposed following main
conditions (1.1) and (1.2) on a Riemannian manifold and moreover the fol-
lowing volume noncollapsing condition

V ol(B(x, r)) ≥ ρ, (1.3)

for all x ∈ M and some constant ρ > 0. Based on this assumptions they
obtained Volume comparison theorem, Isoperimetric inequality and Sobolev
inequality which leaded to the Elliptic and Parabolic gradient estimates.
Gradient estimate for the solutions of the Poisson equation and heat equa-
tion are very powerful tools in geometry and analysis. As an important
application Li and Yau [1] deduced a Harnack inequality and also they ob-
tained upper and lower bounds for heat kernel under the Dirichlet and Neu-
mann boundary conditions. Recently Peng .et.al [2], stablished Yau-type
gradient estimates for following equation on Riemannian manifolds

∆u+ au(log u)p + bu = 0,

where a, b ∈ R and p is a rational number with p =
k1

2k2 + 1
≥ 2, where k1

and k2 are positive integer numbers.
In this paper, using the sufficient instrument like Sobolev inequality and
Volume comparison Theorem from [3] and with the same method we want
to obtain gradient estimate for the smooth function u which satisfies

∆u+ au(log u)p + bu = f, (1.4)

here a, b and p > 0 are real constant and f : M → R is a smooth function.

2. main results

We may use following isoperimetric and sobolev inequality. The proof pro-
cess is just like [?], we can prove the theorem for any r ≤ r0 = r0(n,K1,K, α, ρ).

Theorem 2.1 (Isoperimetric inequality). Let M be a Riemannian manifold
equiped with the Ricci soliton which next three conditions hold on it.

Ric+
1

2
LXg ≥ −λg, |X|(y) ≤ K

d(y,O)α
, V ol(B(x, 1)) ≥ ρ,

for all x ∈ M and some constant ρ > 0 and K ≥ 0. (we could just
have the first two equations when α = 0). Then there is a constant r0 =
r0(n,K1,K, α, ρ) such that for any r ≤ r0 and f ∈ C∞0 (B(x, r)), we have

ID∗n(B(x, r)) ≤ C(n)r.

Here ID∗n(B(x, r)) is the isoperimetric constant defined by

ID∗n(B(x, r)) = V ol(B(x, r))

1

n . sup
Ω

{
V ol(Ω)

n− 1

n

V ol(∂Ω)

}
,

where the supremum is taken over all smooth domains Ω ⊂ B(x, r) with
∂Ω ∩ ∂B(x, r) = ∅.
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Theorem 2.2 (Sobolev inequality). Under the same conditions as in the
above theorem, we have the following Sobolev inequalities.(∮

B(x,r)
|f |

n

n− 1dg

)n− 1

n ≤ C(n)r

∮
B(x,r)

|∇f |dg,

and (∮
B(x,r)

|f |
2n

n− 2dg

)n− 2

n ≤ C(n)r2

∮
B(x,r)

|∇f |2dg.

Moreover, for the case that X = ∇f for some smooth function f , we get(∮
B(x,r)

|f |
n

n− 1dg

)n− 1

n ≤ C(n)r

∮
B(x,r)

|∇f |dg.

Theorem 2.3 (Volume comparison). Assume that for an n-dimension Rie-
mannian manifold, (1.1) and (1.2) hold. Suppose in addition that the volume
non-collapsing condition holds

V ol(B(x, 1)) ≥ ρ,
for positive constants ρ > 0, K ≥ 0 and 0 ≤ α < 1, then for any 0 < r1 <
r2 ≤ 1, we have the volume ratio bound as follows

V ol(B(x, r2))

rn2
≤ eC(n,K1,K,α,ρ)[K1(r22−r21)+K(r2−r1)1−α].

V ol(B(x, r1))

rn1
. (2.1)

In particular, this result are true by considering the gradient soliton vector
field V = ∇f .

Here is our main result:

Theorem 2.4. Suppose that on a Riemannian manifold Mn, (1.1), (1.2)

and (1.3) hold. For q >
n

2
, if u and f be smooth functions such that (1.4)

holds with 0 ≤ u ≤ l1 and |(log u)p| ≤ l2 for constants l1, l2, then there exists
a positive constant r0 = r0(n,N,K, α, ρ, l1, l2, l3) such that for any x ∈ M
and 0 < r ≤ r0 we have

sup

B(x,
1

2
r)

|∇u|2 ≤ C(n, λ,K, α, ρ, l1, l2)
[
(‖f‖∗2q,B(x,r))

2 + r−2(‖u‖∗2,B(x,r))
2
]
.

As an application we conclude:

Corollary 2.5. Suppose that the following condition holds for a gradient
Ricci soliton

Ric +Hessh ≥ −λg,
and more over we have two condition for potential function h as follows

|h(y)− h(z)| ≤ K1d(y, z)α, and sup
x∈M,0≤r≤1

(
rβ‖∇h‖∗q,B(x,r)

)
≤ K2.

81



HAJIAGHASI∗AND AZAMI

Then there is a constant r0 = r0(n, λ,K1,K2, α, β, l1, l2), such that by the
same conditions as last theorem, the solution of (1.4) satisfies

sup

B(x,
r

2
)

|∇u|2 ≤ C(n, λ,K1,K2, α, β, l1, l2)
[
r−2(‖u‖∗2,B(x,r))

2+(‖h‖∗2q,B(x,r))
2
]
,

for any q >
n

2
.
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Abstract. In this paper, we use a special smooth function f : Ω→ R
on a bounded domain of a Riemannian manifold to estimate the lower
bound of the first eigenvalue for quasilinear operator Lf = −∆pf +
V |f |p−2f .

1. Introduction

It is well known that studying the eigenvalues and eigenfunctions of the
Laplacian play an important role in global differential geometry since they
reveal important relations between geometry of the manifold and analy-
sis. So far, there have been some progress on the geometric operator as
bi-Laplace, p-Laplace, and (p,q)-Laplace associated to a Riemannian metric
g on a compact Riemannian manifold Mn. For instance, Lichnerowicz-type
estimate had been studied in some research papers for the p-Laplace [4], p-
Laplace with integral curvature condition [5], and recently investigated for
the first eigenvalue of buckling and clamped plate problems in [3].
In this paper, we are going to study the first eigenvalue of following quasilin-
ear operator which was introduced in [1], studied under considering different
bounded Ricci curvature.
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Let (Mn, g, dv) be a compact Riemannian manifold with volume element dv,
the quasilinear operator on M defines as

Lf = −∆pf + V |f |p−2f. (1.1)

Here V is a nonnegative smooth function on M , and for p ∈ (1,∞) the
p-Laplace operator is defined as

∆pf = div(|∇f |p−2∇f).

Corresponding to the p-Laplacian we have the following eigenvalue equationLf = µ|f |p−2f on M

f = 0 (Dirichlet) or
∂f

∂ν
= 0 (Neumann) on ∂M

where ν is the outward normal on ∂M . The first nontrivial Dirichlet eigen-
value for M is given by

µ1,p(M) = inf
f∈W 1,p

0 (M),f 6=0

∫
M (|∇f |p + V |f |p)dv∫

M |f |pdv
,

and the first Neumann eigenvalue is given by

λ1,p(M) = inf
f∈W 1,p(M),f 6=0

{∫
M (|∇f |p + V |f |p)dv∫

M |f |pdv
;

∫
M
|f |p−2fdv = 0

}
.

Here W 1,p(M) is the Sobolev space and W 1,p
0 (M) is the closure of C∞0 (M)

in Sobolev space W 1,p(M). The function f is then called the eigenfunction
of operator L corresponding to µ (or λ) on M .

2. main results

We consider a bounded domain Ω in a n-dimensional Riemannian man-
ifold M , n ≥ 2. Under some boundary assumption for f : Ω → R, we will
obtain a positive lower bound for µ1,p on bounded domain Ω as follows:

Theorem 2.1. Let Ω be a bounded domain on a Riemannian manifold M ,
and assume that there is a smooth function f : Ω → R such that satisfies
‖∇f‖ ≤ a and ∆pf ≥ b for some positive constants a, b, where a > b. Then
the first Dirichlet eigenvalue of the quasilinear operator L satisfies

µ1,p ≥
bp

ppap(p−1)
.

Proof. We first note that by density we can use smooth functions in the
variational characterization of µ1,p(Ω). So given u ∈ C∞0 (M), based on the
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fact that V is positive function, we have

b

∫
Ω
|u|pdv ≤

∫
Ω
|u|p(∆pf + V )dv

= −
∫

Ω
< ∇|u|p, ‖∇f‖p−2∇f > dv +

∫
Ω
|u|pV dv

= −p
∫

Ω
|u|p−1 < ∇|u|, ‖∇f‖p−2∇f > dv +

∫
Ω
|u|pV dv

≤ p
∫

Ω
|u|p−1‖∇u‖‖∇f‖p−1dv +

∫
Ω
|u|pV dv

≤ p
∫

Ω
|u|p−1ap−1‖∇u‖dv +

∫
Ω
|u|pV dv. (2.1)

Now considering a constant c > 0 and using Young inequality, we obtain

|u|p−1ap−1‖∇u‖ ≤ cq|u|q(p−1)

q
+
ap(p−1)‖∇u‖p

pcp

=
(p− 1)cp/(p−1)|u|p

p
+
ap(p−1)‖∇u‖p

pcp
.

Therefore

p

∫
Ω
|u|p−1ap−1‖∇u‖+

∫
Ω
|u|pV ≤ (p−1)cp/(p−1)|u|p+ap(p−1)‖∇u‖p

cp
+

∫
Ω
|u|pV.

(2.2)

We could choose c so that b− (p− 1)cp/(p−1) =
b

p
, that is cp =

bp−1

pp−1
. Hence

with the statement in theorem a > b, we know

pp−1ap(p−1)

bp−1
> 1,

so, (2.1) and (2.2) lead to

b

p

∫
Ω
|u|pdv ≤ pp−1ap(p−1)

bp−1

(∫
Ω
‖∇u‖pdv +

∫
Ω
|u|pV dv

)
.

Dividing both side to
∫

Ω |u|
p, completes the proof. �

As a first application, we apply this theorem for distance function:

Corollary 2.2. Consider a bounded domain Ω ∈ Mn(c). If Ω is contained
in a geodesic ball BR, then

µ1,p(Ω) ≥ (n− 1)p(
√
−c)p

pp
cothp(

√
−cR), if c < 0,

µ1,p(Ω) ≥ (n− 1)p

ppRp
, if c = 0,

µ1,p(Ω) ≥ (n− 1)p(
√
c)p

pp
cotp(

√
cR), if c > 0.
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Note that in the above corollary Mn(c) is the simply connected space
form of constant sectional curvature c.

Corollary 2.3. Let Mn = R×N be a warped product Riemannian manifold
endowed with the warped metric ds2 = dt2 + e2ρ(t)g0, such that the warped
fuction satisfies ρ

′
(t) ≥ κ > 0, for some constant κ. Then the first Dirichlet

eigenvalue of (1.1), satisfies in the following:

µ1,p(M) ≥ (n− 1)p

pp
κp.

Based on the studies in [2], this kind of estimate that we mentioned for
warped product can be lifted for Riemannian manifolds which admite a
Riemannian submersion over hyperbolic space.

Theorem 2.4. Let M̃m be a complete Riemannian manifold that admits a
Riemannian submersion π : M̃m −→ Mn = R×N , where π is a surjective
map. If the mean curvature of the fibers satisfy ‖HF‖ ≤ α, for some α <

(n− 1)κ1/p, then for the first Dirichlet eigenvalue of (1.1), we have

µ1,p(M) ≥ ((n− 1)pκ− α)p

pp
.
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Abstract. In this paper we provide a new proof of irrationality of
the number e, based on integral representation of alternating sum of
permutations. We provide some applications concerning the number of
derangements.

1. Introduction

The number e has several interesting properties [4, Sec. 1.3], [8] and a rich
history [9]. The most well-known proof of irrationality of this constant is
due to J. Fourier [3, pp. 340–341], which is based on the series representation
e =

∑∞
k=0 1/k! [11, Sec. 3.32]. Also, an alternative proof based on the series

representation 1/e =
∑∞

k=0(−1)k/k! is known [1, Thm. 1.11].

Recently, among our investigation of the alternating sum of permutations
[6], we could to provide a new proof of irrationality of the number e. Our
intention in writing this seminar note is to highlight this proof and some of
its related applications in analytic enumeration. In Section 2 we review our
results on computing some families of sums over permutations. In Section
3 we obtain irrationality of e based on a permutation-sum computation. In
Section 4 we give a proof of this summation identity to complete our proof
of the irrationality of e. In the last section we provide some applications
concerning the number of derangements.
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2. Sums over permutations

Let C(n, j) denote the number of j-combinations of n objects, and P (n, j)
denote the number of j-permutations of n objects, counting the number of
ways to choose an ordered selection of j items from a set of n items. Many
summation identities concerning C(n, j) can be found in the literature. For
example, see [5, Sec. 0.15], [10, Sec. 2.3.4], and [12, pp. 343–355] for a
list of 334 identities. In comparison, there are fewer summation identities
concerning P (n, j) in the literature. Motivated by this fact, in [6, Thm. 1]
we proved the following result.

Theorem 2.1. Let a > 1 be a fixed real. For any positive integer n let

Ln(a) =

∫ a

1
logn tdt. (2.1)

Then, for any integer n > 1 and for x > 0, we have

n∑
j=0

(−1)j P (n, j)xn−j =
(−1)n n! + Ln(ex)

ex
.

Also, in [7, Thm. 1.3, Thm. 1.5] we proved the following results general-
izing the above theorem.

Theorem 2.2. Let a be fixed real number, and for any integer n > 0 let

En(a) =

∫ a

−∞
tnet dt.

Then, for any integer n > 0 and for each real x 6= 0 we have

Sn(x) :=
n∑
j=0

P (n, j)xj = (−1)n xn e
1
x En

(
−1

x

)
. (2.2)

Theorem 2.3. Given any positive integer k, there exist computable polyno-
mials Ak(x) and Bk(x) such that for each n > 1 and for x 6= 0 we have

n∑
j=0

jk P (n, j)xj =
Ak(x)

xk
+
Bk(x)

xk
Sn(x),

where Sn(x) is defined in (2.2) and the polynomials Ak(x) and Bk(x) have
the following properties:

• The coefficients of Ak(x) and Bk(x) are at most in terms of n,
• degAk(x) = k − 1 and degBk(x) = k,
• A1(x) = 1, B1(x) = nx− 1
• for k > 1 the polynomials Ak(x) and Bk(x) satisfy the simultaneous

recurrence{
Ak+1(x) = Bk(x)− kxAk(x) + x2A′k(x),
Bk+1(x) = (nx− kx− 1)Bk(x) + x2B′k(x).

(2.3)
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Also, we mention that the truth of Theorem 2.3 has a connection with
the incomplete gamma function Γ(α, z), which is defined by

Γ(α, z) =

∫ ∞
z

tα−1e−t dt.

Note that En(a) = (−1)n Γ(n + 1,−a). Thus, for any integer n > 0 and

for each real x 6= 0 we have Sn(x) = xn e
1
x Γ
(
n+ 1, 1x

)
, and considering the

relation (2.3) we obtain the following corollary.

Corollary 2.4. With assumptions and notations of Theorem 2.3 we have

n∑
j=0

jk P (n, j)xj =
Ak(x)

xk
+
Bk(x)

xk
xn e

1
x Γ

(
n+ 1,

1

x

)
, (2.4)

where Γ(α, z) denotes the incomplete gamma function.

3. A new proof of irrationality of e

Recalling (2.1), we let Ln = Ln(e) =
∫ e
1 logn t dt. By letting x = 1 in

(2.1) we obtain
n∑
j=0

(−1)j P (n, j) =
(−1)n n! + Ln

e
. (3.1)

We observe that 0 6 log t 6 1 for 1 6 t 6 e. Thus, 0 < Ln 6
∫ e
1 dt = e−1 <

e, which implies 0 < Ln
e < 1 for each positive integer n. Now we assume

that e is rational, say e = α
β for some positive integers α and β. The relation

(3.1) with n = α gives
∑α

j=0(−1)jP (n, j) = (−1)α(α− 1)!β + Lα
e , implying

that Lα
e is an integer, a contradiction.

4. Proof of (3.1)

Integration by parts implies that
∫

logj t dt = t logj t − j
∫

logj−1 t dt.
Thus, the recurrence Lj = e−jLj−1 holds for any integer j > 1. Multiplying

both sides of this recurrence by (−1)j
j! , we can rewrite it as follows

(−1)j

j!
Lj −

(−1)j−1

(j − 1)!
Lj−1 =

(−1)j

j!
e.

Summing over 1 6 j 6 n yields

(−1)n

n!
Ln − L0 = e

n∑
j=1

(−1)j

j!
.

Since L0 = e− 1, we deduce that

(−1)n

n!
Ln = −1 + e

n∑
j=0

(−1)j

j!
= −1 + e

n∑
j=0

(−1)−j

j!
.
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We multiply both sides of this identity by (−1)nn! to get

Ln = (−1)n+1n! + e
n∑
j=0

(−1)n−j
n!

j!
.

Note that the last sum actually is
∑n

j=0 (−1)j P (n, j), the left hand side of

(3.1). This completes the proof.

5. Applications concerning the number of derangements

In combinatorial mathematics, a derangement is a permutation of the
elements of a set, such that no element appears in its original position. As
an application of (3.1), we can give an integral representation for Dn, the
number of derangements on a set of cardinality n. We observe that the
alternating sum at the left hand side of (3.1) and Dn are related as follows:

Dn = n!
n∑
j=0

(−1)j

j!
= (−1)n n!

n∑
j=0

(−1)n−j

(n− j)!
= (−1)n

n∑
j=0

(−1)jP (n, j).

Thus, by considering the relation (3.1), we obtain

Dn =
n!

e
+ (−1)n

Ln
e
, (5.1)

for each integer n > 1. The relation (5.1) is true for n = 0, too. This relation
provides an explicit integral representation for the difference Dn− n!

e . In [6,
Thm. 2] we used this integral representation to compute the moments of
this difference, as follows:

Theorem 5.1. We have
∞∑
n=1

(
Dn −

n!

e

)
= −1 +

1

e
+

Ei(2)− Ei(1)

e2
u −0.218114,

where Ei(x) = −
∫∞
−x

e−z

z dz is the exponential integral function defined by
the Cauchy principal value of the integral. Also,

∞∑
n=1

(
Dn −

n!

e

)2
= −(e− 1)2

e2
+

4

e2

∫ 1
2

0
h(z) dz u 0.433113,

where

h(z) =
e2z√

1− z2
arctan

z√
1− z2

+
e2−2z√
2z − z2

arctan
z√

2z − z2
.

Moreover, letting x = (x1, . . . , xk), for each integer k > 1 the following
multiple integral representation holds:

∞∑
n=1

(
Dn −

n!

e

)k
= −(e− 1)k

ek
+

1

ek

∫ 1

0
· · ·
∫ 1

0

ex1+···+xk

1− (−1)k x1 · · ·xk
dx.
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Considering the notion of asymptotic series [2, Sec. 1.5], due to Poincaré,
in [6, Thm. 3] we used (5.1) to obtain an asymptotic series for Ln and
consequently for Dn, as follows:

Theorem 5.2. Given any positive integer r, for any integer n > 1 we have
the asymptotic expansions

Ln
e

=
r∑

k=1

(−1)k−1
Bk
nk

+O

(
1

nr+1

)
,

and

Dn =
n!

e
+

r∑
k=1

(−1)n+k−1
Bk
nk

+O

(
1

nr+1

)
,

where Bk denotes the k-th Bell number and the constant of O-term does not
exceed Br+1 in both expansions.
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Abstract. In this paper we study the truncated Wallis product, by
showing that for each fixed integer m > 1, there exists computable
constants C′

1, . . . , C
′
m, such that as n→∞,

n∏
k=1

2k · 2k
(2k − 1)(2k + 1)

=

(
1 +

m∑
k=1

C′
k

nk

)
π

2
+O

(
1

nm+1

)
.

1. Introduction

The Wallis product for π obtained in 1655 by John Wallis and appeared
one year later in his Arithmetica Infinitorum [13, p. 179] in the following
form

4

π
=

3× 3× 5× 5× 7× 7× 9× 9× 11× 11× 13× 13× · · ·
2× 4× 4× 6× 6× 8× 8× 10× 10× 12× 12× 14× · · ·

.

See [9], [10, Chap. 3] and [11] for a detailed description of Wallis’ work. In
modern terminology and notation, the Wallis product for π reads as follows

π

2
=

∞∏
k=1

2k · 2k
(2k − 1)(2k + 1)

. (1.1)

2020 Mathematics Subject Classification. Primary 40A20; Secondary 41A60, 33B15
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Several researchers have established interesting properties of (1.1), including
new proofs, generalizations, inequalities and connection with the probability
theory. See [1, 4, 5, 8, 12, 14] and the references given there.

Standard proofs of the Wallis product for π runs over the integration
of the powers of sine or cosine functions (see for example [6, Sec. 9.18]).
Letting for each positive integer n,

In :=

∫ π
2

0
sinn x dx,

integration by parts gives In = n−1
n In−2. Repeated using this recurrence

relation, we deduce that

I2n =
π

2

n∏
k=1

2k − 1

2k
, and I2n+1 =

n∏
k=1

2k

2k + 1
.

Dividing I2n+1 by I2n we get π
2 =Wnηn, where Wn is the truncated Wallis

product given by

Wn =

n∏
k=1

2k · 2k
(2k − 1)(2k + 1)

, (1.2)

and

ηn =
I2n
I2n+1

. (1.3)

Since 0 6 sinx 6 1 for 0 6 x 6 π
2 , we observe that the sequence (In)n>1

is strictly decreasing, and consequently 1 6 ηn 6 1 + 1
2n . Thus, ηn → 1 as

n→∞. Equivalently, Wn → π
2 as n→∞, implying (1.1).

In this note we are motivated by studying the truncated form of the Wallis
product. Considering the notion of asymptotic series [3, Sec. 1.5] due to
Poincaré, we obtain an asymptotic series for the factor ηn, as follows.

Theorem 1.1. Let m > 1 be fixed integer. There exists computable con-
stants C1, . . . , Cm such that as n→∞,

ηn = 1 +

m∑
k=1

Ck
nk

+O

(
1

nm+1

)
. (1.4)

Therefore, we have

π

2
=

(
1 +

m∑
k=1

Ck
nk

)
Wn +O

(
1

nm+1

)
. (1.5)

Remark 1.2. The value of the coefficients Ck are given by

Ck =
k∑
j=0

Gj

(
3

2
, 1

)
Gk−j

(
1

2
, 1

)
, (1.6)
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where

Gk(a, b) =

(
a− b
k

)
B

(a−b+1)
k (a), (1.7)

with B
(`)
n (x) denoting the generalized Bernoulli polynomials, defined for

integers ` > 0 by(
t

et − 1

)`
ext =

∞∑
n=0

B
(`)
n (x)

n!
tn, |t| < 2π.

By computation, we get ηn = P
(
1
n

)
+O

(
1
n11

)
, where

P (t) = 1 +
1

4
t− 3

32
t2 +

3

128
t3 +

3

2048
t4 − 33

8192
t5 − 39

65536
t6

+
699

262144
t7 +

4323

8388608
t8 − 120453

33554432
t9 − 208749

268435456
t10.

Corollary 1.3. Let m > 1 be fixed integer, Wn defined by (1.2), and the
constants C ′1, . . . , C

′
m defined by the recurrence

k∑
j=0

CjC
′
k−j = 0, (1.8)

with the initial values C0 = C ′0 = 1 and C1, . . . , Cm given in (1.6). Then,
as n→∞ we have

Wn =

(
1 +

m∑
k=1

C ′k
nk

)
π

2
+O

(
1

nm+1

)
.

Remark 1.4. By computation, we have Wn = Q
(
1
n

)
π
2 +O

(
1
n11

)
, where

Q(t) = 1− 1

4
t+

5

32
t2 − 11

128
t3 +

83

2048
t4 − 143

8192
t5 +

625

65536
t6

− 1843

262144
t7 +

24323

8388608
t8 +

61477

33554432
t9 − 14165

268435456
t10.

2. Proofs

Proof of Theorem 1.1. The idea to obtain an asymptotic series for the factor
ηn is relating it by the Euler gamma function [7, Eq. 5.2.1], which is defined
for <(z) > 0 by

Γ(z) =

∫ ∞
0

e−ttz−1dt,

and by analytic continuation for <(z) 6 0 with simple poles of residue (−1)n
n!

at z = −n, with n ∈ N. To make this connection, we use the notion of the
Beta function B(a, b) [7, Eq. 5.12.1], which is defined for complex variables
a and b with <(a) > 0 and <(b) > 0 as follows

B(a, b) =

∫ 1

0
ta−1 (1− t)b−1 dt =

Γ(a)Γ(b)

Γ(a+ b)
. (2.1)
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The following trigonometric integral representation [7, Eqs. 5.12.2] holds
the Beta function ∫ π

2

0
sin2a−1 x cos2b−1 x dx =

1

2
B(a, b).

Here we let a = z+1
2 with <(z) > −1, and b = 1

2 . By using (2.1) we deduce
that ∫ π

2

0
sinz x dx =

Γ(12)

2

Γ
(
z+1
2

)
Γ
(
z
2 + 1

) .
We recall that the Wallis product (1.1) and Γ(12) =

√
π [7, Eq. 5.4.6] are

the same [2]. Hence, for each complex number z with <(z) > −1, we get∫ π
2

0
sinz x dx =

√
π

2

Γ
(
z+1
2

)
Γ
(
z
2 + 1

) .
By using this identity, and recalling (1.3), we obtain

ηn =
Γ
(
n+ 3

2

)
Γ
(
n+ 1

2

)
Γ(n+ 1)2

.

Asymptotic expansion for the ratio of two gamma functions [7, Eqs. 5.11.13,
5.11.17, 24.16.1] asserts that for any complex constants a and b, if z → ∞
in the sector | arg(z)| 6 π − δ < π, then

Γ(z + a)

Γ(z + b)
∼ za−b

∞∑
k=0

Gk(a, b)

zk
,

where Gk(a, b) is defined in (1.7). Considering the notion of asymptotic
series [3, Sec. 1.5], due to Poincaré, we read the above as follows

Γ(z + a)

Γ(z + b)
= za−b

(
m∑
k=0

Gk(a, b)

zk
+O

(
1

|z|m+1

))
, (2.2)

where m > 1 is any fixed integer. By using (2.2) we obtain

Γ
(
n+ 3

2

)
Γ(n+ 1)

= n
1
2

(
m∑
k=0

Gk(
3
2 , 1)

zk
+O

(
1

nm+1

))
,

and
Γ
(
n+ 1

2

)
Γ(n+ 1)

= n−
1
2

(
m∑
k=0

Gk(
1
2 , 1)

zk
+O

(
1

nm+1

))
.

Note that G0(a, b) = 1 [7, Eqs. 5.11.15]. Thus, multiplying the above
expansions gives (1.4) with Ck as in (1.6). This completes the proof. �

Proof of Corollary 1.3. By using the relation (1.5) we deduce that

Wn =

(
1 +

m∑
k=1

Ck
nk

)−1
π

2
+O

(
1

nm+1

)
.
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We consider the Taylor expansion of the function t 7→ (1 + t)−1 as t → 0,

and we let t =
∑m

k=1
Ck
nk

, where as assumed n → ∞. Thus, there exists the

constants C ′1, . . . , C
′
m such that(

1 +
m∑
k=1

Ck
nk

)−1
= 1 +

m∑
k=1

C ′k
nk

+O

(
1

nm+1

)
,

or equivalently(
1 +

m∑
k=1

Ck
nk

)(
1 +

m∑
k=1

C ′k
nk

)
= 1 +O

(
1

nm+1

)
.

Comparing the coefficients of the both sides, we observe that the recurrence
(1.8) holds for each k with 1 6 k 6 m. This completes the proof. �
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Abstract. For a positive integer m, a bounded linear operator T on a
Hilbert space is called an exponentially m-isometric operator if
m∑

k=0

(−1)m−k
(
m
k

)
ekT

∗
ekT = 0. We show that for every non-empty com-

pact subset K of pure imaginary axis, there exits an exponentially m-
isometric operator T whose spectrum is K. Moreover, if (Tn)n≥1 is
a sequence of operators in this class that converges to T in the strong
operator topology, then T is also an exponentially m-isometric operator.

1. Introduction

Throughout the paper, H stands for a Hilbert space and B(H) denotes
the space of all bounded linear operators on H. For a positive integer m,
an operator T ∈ B(H) is called an m-isometry if it satisfies the operator
equation

βm(T ) :=
m∑
k=0

(−1)m−k
(
m

k

)
T ∗kT k = 0

where T ∗ denotes the adjoint operator of T . Since the pioneer work of
Agler [1], the study of m-isometries has become an active area of research
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in operator theory. Their applications to differential operator, disconjugacy
and Brownian motion have been discussed in [2]. For more investigation on
m-isometric operators one can see [3, 6].

An operator T is called an exponentially m-isometry if expT is an m-
isometric operator. Exponentially 1-isometric operators are simply expo-
nentially isometries. The set of all exponentially m-isometric operators will
be denoted by Em. In [2] it has been proved that every m-isometry is an
(m + 1)-isometry and every invertible 2m-isometry is a (2m − 1)-isometry
which implies that E2m = E2m−1.

Recall that T ∈ B(H) is called an m-selfadjoint operator if

m∑
k=0

(−1)k
(
m

k

)
T ∗kTm−k = 0

and T is skew-m-selfadjoint if iT is m-selfadjoint. These operators have been
introduced and studied by Helton [5]. Moreover, for m > 1, the operator T ∈
B(H) is said to be strict exponentially m-isometry if it is an exponentially
m-isometric operator but not exponentially (m−1)-isometry. Similarly, one
can define strict m-isometries and strict m-selfadjoint operators.

In [4, 6] authors investigate the sum of an m-isometric or an m-selfadjoint
operator with a nilpotent operator and also the sum or product of two
m-isometries or two m-selfadjoint operators. As an application of these
results, we show that the sum of two commuting operators A and B that
are, respectively, exponentially m-isometry and exponentially n-isometry is
exponentially (m+ n− 1)-isometry. Also, we prove that if Q is a nilpotent
operator of order l, Ql = 0 and Ql−1 6= 0, for some positive integer l, and
A commutes with Q, then the sum A + Q is an exponentially (m + 2l −
2)-isometric operator. It is known that the class of m-isometric and m-
selfadjoint operators are stable under the powers [3, 6, 7]. We observe that
the class of exponentially m-isometric operators is not stable under powers.

Also, we show that for each compact subset K of the pure imaginary
line, there is an exponentially m-isometric operator T on a separable infi-
nite Hilbert space whose spectrum is K. After that, we prove that limit of
every sequence of exponentially m-isometric operators with respect to the
strong operator topology is also an exponentially m-isometric operator. Fur-
thermore, we show that every exponentially m-isometric diagonal, Toeplitz
or multiplication operator is skew-m-selfadjoint. Moreover, we characterize
normal, idempotent and weighted shift operators which are exponentially
m-isometry.

2. main result

The skew-m-selfadjointness condition, e−sT
∗
e−sT =

m−1∑
j=0

Ajs
j for each s ∈

R and some operators Aj , implies that the class of exponentially m-isometric
operators contains all skew-m-selfadjoint operators. The following lemma
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implies that the class of skew-m-selfadjoint operators is a proper subset of
Em. In the following, 〈., .〉 denotes the inner product on H. Moreover, for
any vectors x and y in H, x⊗ y denotes the rank one operator defined by

(x⊗ y)(z) = 〈z, y〉x.

Lemma 2.1. Let x, y ∈ H. If 〈x, y〉 = 1, then the following statements are
equivalent:
(a) ‖x‖‖y‖ = 1;
(b) there exists a nonzero real number α such that y = αx;
(c) 〈z, y〉 〈x, x〉 y = 〈z, x〉 〈y, y〉x, for each z ∈ H;
(d) 〈x, z〉 〈z, y〉 ≥ 0, for each z ∈ H;
(e) x⊗ y is selfadjoint.

In the following example note that x ⊗ y is a nonzero idempotent if and
only if 〈x, y〉 = 1.

Example 2.2. Let H be an infinite-dimensional Hilbert space with an or-
thonormal basis {en}n∈N. For two distinct integers l and k greather that one,
let x = el and y = el+ek. Then by Lemma 2.1, x⊗y is an idempotent which
is not selfadjoint. Moreover, let A be the unilateral weighted shift operator,
Aej = wjej+1, with weight (wj)j on H such that wl = wl−1 = wk−1 = 0,
N−1∏
i=0

wi+j = 0 for all j and N =
[
m+1
2

]
. Since A and iA are unitarily

equivalent, Proposition 2.5 of [7] implies that A is a skew-m-selfadjoint op-
erator. Also, it is easily seen that the operator x ⊗ y commutes with A.
Thus A + 2πix ⊗ y is an exponentially m-isometric operator that is not
skew-m-selfadjoint.

It is known that m-isometric and m-selfadjont operators are stable under
powers [3, 6, 7]; meanwhile exponentially m-isometric operators are not.
As an example, the operator (iI)n is exponentially isometry for all odd
numbers n but it is not for any even number m. The sum of the commuting
exponentially m-isometries as follows.

Theorem 2.3. Let A,B,Q ∈ B(H) be commuting operators. Suppose that
A ∈ Em, B ∈ En and Ql = 0 for some positive integer l. Then
(i) For each k ∈ Z, kA ∈ Em.
(ii) A + B ∈ Em+n−1. In particular, for every pure imaginary number µ,
A+ µI ∈ Em.
(iii) A+Q ∈ Em+2l−2.

Moreover, A+Q is strict exponentially (m+ 2l− 2)-isometry if and only

if Q∗l−1βm−1(e
A)Ql−1 6= 0. In particular, for the case m = 1, A + Q is

strict exponentially (2l− 1)-isometry if and only if Q is nilpotent of order l.

Now, similar description for m-isometric operators [4], we will describe
exponentially m-isometric operators with prescribed spectrum.
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Theorem 2.4. Let H be an infinite dimensional separable Hilbert space
and m > 1 be an odd number. If K is a non-empty compact subset of pure
imaginary axis, then there exists a strict exponentially m-isometric operator
T ∈ B(H) with spectrum K.

Proposition 2.5. Let T be an exponentially m-isometric operator. If one
of the following statements holds, then T is skew-selfadjoint.
(i) T is a Toeplitz operator.
(ii) T is a diagonal operator.
(iii) T = Mϕ is the multiplication operator defined by Mϕf = ϕf on L2(µ),
for a σ-finite measure µ and a bounded Borel function ϕ, or on the Hardy
space H2 for ϕ ∈ H∞.

Proposition 2.6. Let T be an exponentially m-isometric operator. Then
the following statements hold:
(i) If T is a normal operator then it is exponentially isometry.
(ii) If T is bounded below then it is invertible. Consequently, if T is an
isometric operator, then it is unitary.
(iii) If T is an idempotent operator then T = 0.

Suppose that (Tn)n≥1 is a sequence of operators in Em. If Tn converges to
T then T ∈ Em. Now, we consider the following question: If Tn converges to
T in the strong operator topology, is T ∈ Em? We will give positive answer
to this question.

Proposition 2.7. If (Tn)n≥1 is a sequence of operators in Em that converges
to T in the strong operator topology, then T ∈ Em.

Corollary 2.8. Suppose that (Tn)n≥1 is a sequence of m-selfadjoint opera-
tors such that Tn → T in the strong operator topology. Then T is also an
m-selfadjoint operator.
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Abstract. In this paper, we introduce a new notion of generalized θ-φ-
contraction and establish some results of fixed point for such mappings
in complete b-metric space.

1. Introduction

The Banach contraction principle is a fundamental result in fixed point
theory [2]. Due to its importance, various mathematics studied many inter-
esting extensions and generalizations, (see [7]). In 2014, Jleli and Samet [5]
analyzed a generalization of the Banach fixed point theorem on generalized
metric spaces in a new type of contraction mappings called θ -contraction
(or JS -contraction) and proved a fixed point result in generalized metric
spaces. This direction has been studied and generalized in different spaces
and various fixed point theorems have been developed (see [6]). Many gen-
eralizations of the concept of metric spaces are defined and some fixed point
theorems were proved in these spaces. In particular, b -metric spaces were
introduced by Bakhtin [1] and Czerwik [3], in such a way that triangle in-
equality is replaced by the b-triangle inequality: d(x, y) ≤ s(d(x, z)+d(z, y))
for all pairwise distinct points x, y, z and s ≥ 1. Any metric space is a b-
metric space but in general, b-metric space might not be a metric space.
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Various fixed point results were established on such spaces. For more infor-
mation on b -metric spaces and b-metric-like spaces, the readers can refer to
(see [4]).

Very recently, Zheng et al. [8] introduced a new concept of θ-φ-contraction
and established some fixed point results for such mappings in complete met-
ric space and generalized the results of Brower and Kannan.

In this paper, we introduce a new notion of generalized θ-φ-contraction
and establish some results of fixed point for such mappings in complete b-
metric space. The results presented in the paper extend the corresponding
results of Kannan and Reich on b-rectangular metric space.

Definition 1.1. Let X be a nonempty set, s ≥ 1 be a given real number,
and let d : X ×X → [0,+∞[ be a function such that for all x, y ∈ X and
all distinct points u, v ∈ X, each distinct from x and y:

1. d(x, y) = 0, if only if x = y;
2. d(x, y) = d(y, x);
3. d(x, y) ≤ s[d(x, z) + d(z, y)], (b-rectangular inequality).

Then (X, d) is called a b-metric space.

Definition 1.2. Let θ be the family of all functions θ :]0,+∞[→]1,+∞[such
that

(θ1) θ is increasing,
(θ2) for each sequence (xn) ⊂]0,+∞[;

limn→0xn = 0 if and only if limn→∞θ(xn) = 1;

(θ3) θ is continuous.

In [8], Zheng et al. presented the concept of θ-φ-contraction on metric
spaces and proved the following nice result.

Definition 1.3. Let φ be the family of all functions φ : [1,+∞[→ [1,+∞[,
such that

(ϕ1) φ is nondecreasing;
(ϕ2) for each t ∈]1,+∞[, limn→∞φ

n(t) = 1;
(ϕ3) φ is continuous.

Definition 1.4. Let (X, d) be a metric space and T : X → X be a mapping.
Then T is said to be a θ-φ-contraction if there exist θ ∈ Θ and φ ∈ Φ such
that for any x, y ∈ X,

d(Tx, Ty) > 0⇒ θ[d(Tx, Ty)] ≤ φ(θ[N(x, y)]),

where

N(x, y) = max{(x, y), d(x, Tx), d(y, Ty)}.

Theorem 1.5. Let (X, d) be a complete metric space and let T : X → X be
a θ-φ-contraction. Then T has a unique fixed point.
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2. main results

In this paper, using the idea introduced by Zheng et al., we present the
concept θ-φ-contraction in b-metric spaces and we prove some fixed point
results for such spaces.

Definition 2.1. Let (X, d) be a b-metric space with parameter s > 1 space
and T : X → X be a mapping.

(1) T is said to be a θ-contraction if there exist θ ∈ Θ and r ∈]0, 1[ such
that

d(Tx, Ty) > 0⇒ θ[s3d(Tx, Ty)] ≤ θ[M(x, y)]r,

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(Tx, y)

2s2
}.

(2) T is said to be a θ-φ-contraction if there exist θ ∈ Θ and φ ∈ Φ such
that

d(Tx, Ty) > 0⇒ θ[s3d(Tx, Ty) ≤ φ[θ(M(x, y))],

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(Tx, y)

2s2
}.

(3) T is said to be a θ-φ- Kannan-type contraction if there exist θ ∈ Θ
and φ ∈ Φ such that for all x, y ∈ X with d(Tx, Ty) > 0, we have

θ[s3d(Tx, Ty)) ≤ φ[θ(
d(x, Tx) + d(y, Ty)

2
)].

(4) T is said to be a θ-φ-Reich-type contraction if there exist exist θ ∈ Θ
and φ ∈ Φ such that for all x, y ∈ X with d(Tx, Ty) > 0, we have

θ[s3d(Tx, Ty)) ≤ φ[θ(
d(x, y) + d(x, Tx) + d(y, Ty)

3
)].

Theorem 2.2. Let (X, d) be a complete b-metric space and T : X → X be a
θ-contraction, i.e, there exist θ ∈ Θ and r ∈]0, 1[ such that for any x, y ∈ X,
we have

d(Tx, Ty) > 0⇒ θ[s3d(Tx, Ty)] ≤ θ[M(x, y)]r.

Then T has a unique fixed point.

Corollary 2.3. Let (X, d) be a complete b-metric space and T : X → X be
a given mapping. Suppose that there exist θ ∈ Θand k ∈]0, 1[ such that for
any x, y ∈ X, we have

d(Tx, Ty) > 0⇒ θ[s3d(Tx, Ty)] ≤ [θ(d(x, y))]k.

Theorem 2.4. Let (X, d) be a complete b-metric space and T : X → X
be a mapping. Suppose that there exist θ ∈ Θ and φ ∈ Φ such that for all
x, y ∈ X,
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d(Tx, Ty) > 0⇒ θ[s3d(Tx, Ty)] ≤ φ[θ(M(x, y))]

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty),
1

2s2
d(y, Tx)}.

Then T has a unique fixed point.

It follows from Theorem 2.4 that we obtain the followed fixed point theo-
rems for θ-φ-Kannan-type contraction and θ-φ-Reich-type contraction. The
results presented in the paper improve and extend the corresponding results
due to Kannan-type contraction and Reich-type contraction on rectangular
b-metric space.

Theorem 2.5. Let (X, d) be a complete b-metric space and T : X → X be
a Kannan-type contraction. Then T has a unique fixed point.

Theorem 2.6. Let (X, d) be a complete b-metric space and T : X → X be
a Reich-type contraction. Then T has a unique fixed point.
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Abstract. In this paper, we generalize a J− metric spaces, where it
defined a metric space in three dimensions with a triangle inequality
that includes a constant b > 0. We extend the notion of J− metric
spaces to CJ metric spaces that include a control function θ in three
dimensions instead of the constant b.

1. Introduction

The fixed point theory is a new, essential theory, and its application
is utilized in many fields, including Mathematics, Economics, and many
others. For example, the impact of the fixed point theory in the fractional
differential equations appear clearly to all the observers, see [3, 4]. The fixed
point theory and the proof of the uniqueness were introduced by Banach [2],
which was encouraging to all subsequent researchers to start working on this
theory; see [5, 8].

These days, the fixed point is an active area wildly generalizing Banach,
see [6, 7]. Generalization of the fixed point theory can be made in two
ways, either a generalization of the Banach contraction to another linear or
nonlinear contraction. The other way of extension is to generalize the metric
spaces by either changing the triangle inequality, omitting the symmetry
condition, or assuming that the self-distance is not necessarily zero.
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Those generalizations are important due to the fact that more general
spaces or contractions impact a greater number of applications that can be
adapted to that results.

In this work, we introduce a new extension to J− metric spaces, called
CJ− metric spaces, where θ is the controlled function in the triangle in-
equality. We prove some fixed point results in this new type of metric space.

In the main result section, we prove the existence and the uniqueness
of a fixed point for self-mappings on CJ− metric spaces, in Theorems 2.7
and 2.8, we consider self-mappings that satisfy linear contractions where in
Theorem 2.9, we consider mappings that satisfy nonlinear contractions. Our
finding generalizes many results in the literature.

We begin our preliminaries by recalling the definitions of J-metric spaces.

Definition 1.1. [1] Consider a nonempty set δ, and a function J : δ3 →
[0,∞). Let us define the set,

S(J, δ, φ) = {{φn} ⊂ δ : limn→∞J(φ, φ, φn) = 0}

for all φ ∈ δ.

Definition 1.2. [1] Let δ be a set with at least one element and, J : δ3 →
[0,∞) that satisfies the mentioned below conditions:

(i) J(α, β, γ) = 0 implies α = β = γ for any α, β, γ ∈ δ.
(ii) There are some b > 0, where for each (α, β, γ) ∈ δ3 and {νn} ∈

S(J, δ, ν)

J(α, β, γ) ≤ b limsupn→∞(J(α, α, νn) + J(β, β, νn) + J(γ, γ, νn)).

Then, (δ, J) is defined as a J−metric space. In addition, if J(α, α, β) =
J(β, β, α) for each α, β ∈ δ, the pair (δ, J) is defined as a symmetric J−metric
space.

2. main results

In this paper, we will define CJ− metric spaces and prove the existence
and the uniqueness of the fixed point of self-mapping.

Definition 2.1. Let δ is a non empty set and a function CJ : δ3 → [0,∞).
Then the set is defined as follows

S(CJ , δ, α) = {{αn)} ⊂ δ : limn→∞CJ(α, α, αn) = 0}

for each α ∈ δ.

Definition 2.2. Let δ be a set with at least one element and CJ : δ
3 →

[0,∞) fulfill the following conditions:

(i) CJ(α, β, γ) = 0 implies α = β = γ for any α, β, γ ∈ δ.
(ii) (ii) There exist a function θ : δ3 → [0,∞), where θ is a continuous

function and

limn→∞θ(α, α, αn)
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is a finite and exist where,

CJ(α, β, γ) ≤ θ(α, β, γ)limsupn→∞(CJ(α, α, φn)+CJ(β, β, φn)+CJ(γ, γ, φn).

Then (δ, CJ) is defined as CJ−metric space. In addition, if

CJ(α, α, β) = CJ(β, β, α)

for each α, β ∈ δ, then (δ, CJ) is defined as symmetric CJ−metric space.

Remark 2.3. Notice that, this symmetry hypothesis does not necessarily
mean that

CJ(α, β, γ) = CJ(β, α, γ) = CJ(γ, β, α) = · · · .
We will start by presenting some properties in the topology of CJ−metric
spaces.

Definition 2.4. (1) Let (δ, CJ) is a CJ−metric space. A sequence {αn} ⊂ δ
is convergent to an element α ∈ δ if limn→∞αn = α ,for {αn} ∈ S(CJ , δ, α).

(2) Let (δ, CJ) is a CJ−metric space. A sequence {αn} ⊂ δ is called
Cauchy iff limn,m→∞CJ(αn, αn, αm) = 0.

(3) A CJ− metric space is called complete if each Cauchy sequence in δ
is convergent.

(4) In a CJ−metric space (α,CJ), if ψ is a continuous map at α0 ∈ Γδ
then for each αn ∈ S(CJ , α, a0) gives {ψan} ∈ S(CJ , α, ψa0).

Proposition 2.5. In a CJ−metric space (δ, CJ), if {αn} converges, then it
is convergent to one exact element in δ.

Definition 2.6. Let (δ, CJ1) and (Γ, CJ1) are two CJ− metric spaces and
ψ : δ → Γ is a map . Then ψ is said to be a continuous at a0 ∈ δ if, for each
ε > 0, there is ζ > 0 where, for each a ∈ δ, CJ2(ψa0, ψa0, ψα) < ε whenever
CJ1(a0, a0, α) < ζ.

Theorem 2.7. Let (δ, CJ) is a CJ− complete symmetric metric space, and
g : δ → δ is a continuous map satisfies

CJ(gα, gβ, gγ) � P (CJ(α, β, γ)) forall α, β, γ ∈ δ.
Where, P : [0,+∞)→ [0,+∞) is a function and for all t ∈ [0,+∞),

t � x, P (t) � P (x).

limn→∞P
n(t) = 0 for each fixed t > 0.

Then, g has a unique fixed point in δ.

Theorem 2.8. Let (δ, CJ) is a CJ− complete symmetric metric space and
g : δ → δ be a mapping that satisfies,

CJ(gα, gβ, gγ) ≤ φ(α, β, γ)CJ(α, β, γ), ∀α, β, γ ∈ δ,
where φ ∈ A , and φ : δ3 → (0, 1), such that

φ(g(α, β, γ)) ≤ φ(α, β, γ) and {g : δ → δ}
g is a given mapping. Then g has a unique fixed point in δ.
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Theorem 2.9. Let (δ, CJ) is a complete symmetric CJ−metric spaces, g :
δ → δ is a continuous map where

CJ(gα, gβ, gγ) ≤ aCJ(α, β, γ)+bCJ(α, gα, gα)+cCJ(β, gβ, gβ)+dCJ(γ, gγ, gγ)

for each α, β, γ ∈ δ where

0 < a+ b < 1− c− d,
0 < a < 1.

Then, there is a unique fixed point of g.
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Abstract. In this paper, we introduce and solve the concept of the
generalized Jensen-type ρ−functional equation. Finally, we investigate
the Hyers-Ulam stability of generalized Jensen-type ρ−functional equa-
tion with Gǎvruta’s control function on orthogonally Banach algebras
approach direct methods.

1. Introduction

A classical question in the sense of functional equation says that ”when
is it true that a function which approximately satisfies a functional equa-
tion must be close to an exact solution of the equation? ” Ulam raised the
stability of functional equations and Hyers was the first one which gave an
affirmative answer to the question of Ulam for additive mapping between
Banach spaces. Th. M. Rassias proved a generalized version of the Hy-
ers’s theorem for approximately additive maps. Gǎvruta generalized these
theorems for approximate additive mappings controlled by the unbounded
Cauchy difference general control function ϕ(x, y). The study of stability
problem of functional equations have been done by several authors on dif-
ferent spaces such as Banach, C∗-Banach algebras and modular spaces (for
example see [2, 3, 4, 6]).
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Recently, Eshaghi Gordji et al. [1] introduced notion of the orthogonal.
The study on orthogonal sets has been done by several authors (for example,
see [5, 7, 8])

Definition 1.1. [1] Let X 6= ∅ and ⊥ ⊆ X × X be a binary relation. If
there exists u0 ∈ X such that for all v ∈ X,

v⊥u0 or u0⊥v,

then ⊥ is called an orthogonally set (briefly O-set). We denote this O-set
by (X,⊥). Let (X,⊥) be an O-set and (X, d) be a generalized metric space,
then (X,⊥, d) is called orthogonally generalized metric space.

Let (X,⊥, d) be an orthogonally metric space.
(i) A sequence {un}n∈N is called orthogonally sequence (briefly O-sequence)
if for any n ∈ N,

un⊥un+1 or un+1⊥un.

(ii) Mapping f : X → X is called ⊥−continuous in u ∈ X if for each O-
sequence {un}n∈N in X with un → u, then f(un) → f(u). Clearly, every
continuous map is ⊥−continuous at any u ∈ X.
(iii) (X,⊥, d) is called orthogonally complete (briefly O-complete) if every
Cauchy O-sequence is convergent to a point in X.
(iv) Mapping f : X → X is called ⊥-preserving if for all u, v ∈ X with u⊥v,
then f(u)⊥f(v).
Consider the orthogonally generalized Jensen-type ρ-functional equation

f
(u+ v

2
+ w

)
+ f

(u+ w

2
+ v
)

+ f
(v + w

2
+ u
)
− 2f(u)− 2f(v)− 2f(w) =

ρ
(

3f
(u+ v + w

3

)
− 2f

(u+ v

2

)
− 2f

(u+ w

2

)
− 2f

(v + w

2

)
+ f(u) + f(v) + f(w)

)
(1.1)

such that ρ 6= 0,±1 is a real number and u⊥v, u⊥w, v⊥w.
In this paper, we investigate (1.1) is additive equation and the Hyers-Ulam
of it’s equation approach direct methods with Gǎvruta’s control function.

2. Hyers-Ulam Stability

Throughout this section, let A and B are two orthogonally Banach alge-
bras.
To prove the main theorem, we need the following lemma. Firstly, in the
next lemma, we prove that f is an additive mapping.
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Lemma 2.1. If a mapping f : A→ B satisfies

f
(u+ v

2
+ w

)
+ f

(u+ w

2
+ v
)

+ f
(v + w

2
+ u
)
− 2f(u)− 2f(v)− 2f(w) =

ρ
(

3f
(u+ v + w

3

)
− 2f

(u+ v

2

)
− 2f

(u+ w

2

)
− 2f

(v + w

2

)
+ f(u) + f(v) + f(w)

)
(2.1)

for all u, v, w ∈ A with u⊥v, u⊥w, v⊥w, then the mapping f is additive.

In the following theorem, we prove Hyers-Ulam stability of orthogonally
generalized Jensen-type ρ-functional with Gǎvruta’s control function on or-
thogonally Banach algebras.

Theorem 2.2. Let ϕ : A3 → [0,∞) be a function such that

ϕ̃(u, v, w) :=

∞∑
n=0

1

2n
ϕ(2nu, 2nv, 2nw) <∞ (2.2)

Suppose that f : A→ B is a mapping satisfying∥∥∥f(u+ v

2
+ w

)
+ f

(u+ w

2
+ v
)

+ f
(v + w

2
+ u
)
− 2f(u)− 2f(v)− 2f(w)−

ρ
(

3f
(u+ v + w

3

)
− 2f

(u+ v

2

)
− 2f

(u+ w

2

)
− 2f

(v + w

2

)
+ f(u) + f(v) + f(w)

)∥∥∥ ≤ ϕ(u, v, w)

(2.3)

for all u, v, w ∈ A with u⊥v, u⊥w, v⊥w. Then there exist a unique additive
mapping T : A→ B such that

‖f(u)− T (u)‖ ≤ 1

3
ϕ(u, u, u)

for all u ∈ A.

In the next corollary we prove the Hyers-Ulam stability of orthogonally
generalized Jensen-type ρ-functional with Rassias’s control function on or-
thogonally Banach algebras.

Corollary 2.3. Let θ, pi, qi, i = 1, 2, 3 are positive real such that pi < 1 and
qi < 3 . Suppose that f : A→ B is a mapping such that∥∥∥f(u+ v

2
+ w

)
+ f

(u+ w

2
+ v
)

+ f
(v + w

2
+ u
)
− 2f(u)− 2f(v)− 2f(w)−

ρ
(

3
(
f
(u+ v + w

3

)
− 2f

(u+ v

2

)
− 2f

(u+ w

2

)
− 2f

(v + w

2

)
+ f(u) + f(v) + f(w)

)∥∥∥ ≤ θ(‖u‖p1 + ‖v‖p2 + ‖w‖p3),

(2.4)
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for all u, v, w ∈ A with u⊥v, u⊥w, v⊥w. Then there exist a unique additive
mapping T : A→ B such that

‖f(u)− T (u)‖ ≤ θ

3
{ 1

2− 2p1
‖u‖p1 +

1

2− 2p2
‖u‖p2 +

1

2− 2p3
‖u‖p3}

for all u ∈ A.
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Abstract. In this note, we introduce a lower triangular conditional
operator on a unital C∗-algebra A.

1. Introduction

A linear mapping E : A → B is called a projection if E(b) = b for every
b ∈ B. In this case E2 = E and ‖E‖ ≥ 1. Tomiyama in [8] prove that if E is a
projection of norm 1 from A onto B, then E is positive, E(a∗)E(a) ≤ E(a∗a)
and B-linear, that is, E(b1ab2) = b1E(a)b2 for all a ∈ A and b1, b2 ∈ B. A
B-linear projection E : A → B which is also a positive mapping, is called a
conditional expectation([1, 2, 4, 5, 6, 7, 8]).

Let a, b ∈ A and α ∈ C. We denote by La the left multiplication operator
on A. Define the linear operator Ta : A → A by Ta(x) = E(a)x+ aE(x)−
E(a)E(x), where E : A → B is a conditional expectation operator. Each
a ∈ A can be written uniquely as a = a1 + a2 where a1 = E(a) ∈ B
and a2 = a − E(a) ∈ N (E), because A = B ⊕ N (E). It follows that Ta =
La1+LaE−La1E = La1+La2E. Thus, αTa+Tb = Tαa+b, Ta(N (E)) ⊆ N (E)
and ‖Ta‖ ≤ 3‖a‖. When e = 1 then T1 = I, the identity operator. The
matrix representation of Ta with respect to the decompositionA = B⊕N (E)

2020 Mathematics Subject Classification. Primary 47A63, 47A30.
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is

Ta =

[
La1 0
La2 La1

]
,

where a = a1+a2. Put a?b = a?E b = Ta(b). Then a?b = a1b+ab1−a1b1 =
a1b1 + (a1b2 + a2b1). So (a ? b)1 = a1b1 and (a ? b)2 = a1b2 + a2b1. It follows
that

TaTb =

[
La1 0
La2 La1

] [
Lb1 0
Lb2 Lb1

]
=

[
L(a?b)1 0
L(a?b)2 L(a?b)1

]
= Ta?b.

Put K = K(E) = {Ta = La1 + La2E : a ∈ A}. Then K is a subalgebra of
B(A), the Banach algebra of all bounded and linear maps defined on A and
with values in A. Note that the mapping T : A → K given by T (a) = Ta is
linear with ‖T ‖ ≤ 3 and T (a ? b) = T (a)T (b) for all a, b ∈ A.

2. Characterizations

Let E1, E2 be two distinct conditional expectations from A onto B. Then
it is easy to check that G := E1 + E2 − I is invertible. Since E1E2 = E2

and E2E1 = E1, then we have E1G = E2 = GE2, E2G = E1 = GE1 and
(I − E2)(I − E1) = I − E2.

Proposition 2.1. For a ∈ A, let Ta ∈ K(E1) and Sa ∈ K(E2). Then there
is an invertible operator G on A such that GTaG = SG(a) and the mapping
Λ : Ta → GTaG is an algebra isomorphism of K(E1) onto K(E2) which is a
homeomorphism.

Proof. Take G = E1 + E2 − I. Then G is invertible with G−1 = G. Recall
that for each a, b ∈ A, Ta(b) = a ?E1 b = (E1a)b+ a(E1b)− (E1a)(E1b) and
Sa(b) = a ?E2 b = (E2a)b+ a(E2b)− (E2a)(E2b). Then we have

(TaG)(b) = Ta(E1b+ E2b− b)
= a ?E1 (E1b) + a ?E1 (E2b)− a ?E1 b

= a(E2b) + (E1a)(E1b)− (E1a)b,

and

(GTaG)(b) = (E1 + E2 − I)[a(E2b) + (E1a)(E1b)− (E1a)b]

= E2b− a(E2b) + (E1a)b.

On the other hand, we have

SGa(b) = (Ga) ?E2 b = E2(Ga)b+ (Ga)(E2b)− E2(Ga)E2(b)

= (E1a)b+ (E2a)(E2b)− a(E2b).

Thus, GTaG = SGa ∈ K(E2). Also, Λ(TaTb) = Λ(Ta)Λ(Tb). So, Λ is a
continuous algebra isomorphism and Λ−1(Sb) = GSbG is also continuous
with respect to any of the operator topologies. �
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Proposition 2.2. Let a ∈ A. If a1 has a left inverse, then Ta is injective.
Moreover, if B has a right invertible element, then the mapping T : A → K
given by T (a) = Ta is injective.

Proof. Let Ta(b) = 0 for some b ∈ A. Then a1b1 = −(a1b2 + a2b1) ∈
A∩N (E) = {0} and so b1 = 0. It follows that a1b = 0 and hence b = 0. Now,
let b0 ∈ B is a right invertible element and let Ta(b) = a1b+ab1−a1b1 = 0 for
all b ∈ A. Take b = e. Then ae = 0 and so a1 = E(ae) = 0. Thus, a2b1 = 0
for all b1 ∈ B. Take b1 = b0. Then a2 = 0. Consequently, a = 0. �

Proposition 2.3. Let S0(A|B) = {x ∈ A : Aex ⊆ B}. Then the following
assertions hold.

(i) N e+ eN + B = ∨a∈AR(Ta), where ∨ denotes the algebraic span.
(ii) ∪a∈ATa(S0) ⊆ B.
(iii) N ⊆ ∩a∈NN (Ta). Moreover, if N has a left invertible element, then

N = ∩a∈NN (Ta).

Proof. (i) Let a, x ∈ A. Then Ta(x) = (a2x1)e+e(a1x2)+a1x1 ∈ N e+eN+B
and hence ∨a∈AR(Ta) ⊆ N e + eN + B. Conversely, let k ∈ N and b ∈ B.
Since ek = T1(k), ke = Tk(1) and b = Tb(e), thenN e+eN+B ⊆ ∨a∈AR(Ta).

(ii) Let a ∈ A and x ∈ S0. Then {ex, aex} ⊂ B, x1 = E(x) = E(ex) = ex
and so Ta(x) = a1x + ax1 − a1x1 = a1ex + aex − a1ex = aex ∈ B. Thus,
∪a∈ATa(S0) ⊆ B.

(iii) Let {a, x} ⊂ N . Then a1 = 0 = x1, Ta(x) = 0 and so x ∈ N (Ta)
for all a ∈ N . Now let x ∈ ∩a∈NN (Ta) and for some a2 ∈ N , there is an
element a0 ∈ A such that a0a2 = 1. Then a2x1 = Ta2(x) = 0 and hence
x1 = a0a2x1 = 0. Thus, x = x2 ∈ N . �

Proposition 2.4. Let a, b ∈ A. Then the equation TaX = Tb has a solution
in K whenever a1 has a left inverse.

Proof. Let a0a1 = 1 and X = Tx for some a0, x ∈ A. According to the
matrix form of TaTx = Tb, we have[

La1x1 0
La2x1+a1x2 La1x1

]
=

[
Lb1 0
Lb2 Lb1

]
.

It follows that a1x1 = b1 and a2x1 + a1x2 = b2. Thus, x1 = a0b1 and
a1x2 = b2 − a2x1. Then x2 = a0b2 − a0a2a0b1 and hence x = x1 + x2 =
a0b+ a0a2a0b1. �

It has been shown in [3, Lemma 1.4, Proposition 3.1] that sN = N s = 0
and ‖b+ S1‖ B

S1

= ‖Lb‖N→N , for all s ∈ S1 and b ∈ B. Using these, we have

the following result.

Proposition 2.5. Let ‖I − E‖ ≤ 1. Then

‖La1‖N→N ≤ inf
k∈N
‖Ta+k‖ ≤ ‖Ta1‖ ≤ ‖La1‖B→B + ‖La1‖N→N .
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Proof. Let s ∈ S1 and x ∈ A with ‖x‖ = 1. Since E is a contraction, then
we have ‖x1‖ = ‖E(x)‖ ≤ ‖E‖ ‖x‖ ≤ ‖x‖ = 1 and ‖x2‖ = ‖(I − E)x‖ ≤
‖I − E‖ ‖x‖ ≤ 1. Then we get that

‖Ta1x‖ = ‖a1x1 + a1x2‖ ≤ ‖a1x1‖+ ‖a1x2‖
= ‖a1x1‖+ ‖(a1 + s)x2‖ ≤ sup

x1∈B
‖a1x1‖+ ‖a1 + s‖

= ‖La1‖B→B + inf ‖a1 + s‖ = ‖La1‖B→B + ‖a1 + S1‖ B
s1

.

Thus, ‖Ta1‖ ≤ ‖La1‖B→B + ‖La1‖N→N . Also, we have

inf
k∈N
‖Ta+k‖ ≤ ‖Ta+(a1−a)‖ = ‖Ta1‖.

On the other hand, ‖Ta+k‖ = ‖Ta1+(a2+k)‖ = sup‖x‖=1 ‖a1x+ (a2 + k)x1‖ ≥
sup‖x‖=1 ‖a1x2‖ = ‖La1‖N→N . Hence, infk∈N ‖Ta+k‖ ≥ ‖La1‖N→N . �

Proposition 2.6. K is closed in the norm operator topology.

Proof. Let {Tan} ⊆ K and ‖Tan − T‖ → 0, for some T ∈ B(A). Then we
have

lim
n→∞

Tan = lim
n→∞

[
Lan1 0
Lan2 Lan1

]
=

[
T1 T2
T3 T4

]
= T

where an1 = E(an) and an2 = an − E(an). Since Tan(N ) ⊆ N then
T (N ) ⊆ N , and so T2 = 0. Further, limn→∞ ‖Tan1 − T1‖B→B = 0 im-
plies that limn→∞ an1 = limn→∞ an1e = T1e = ETEe = E(Te), and so
T1x1 = limn→∞ an1x1 = E(Te)x1 for all x1 ∈ B. Thus, T1 = LE(Te). Like-
wise, for each x2 ∈ N we have T4x2 = limn→∞ an1x2 = E(Te)x2 and hence
T4 = LE(Te). Moreover, since limn→∞ an = limn→∞ Tan1 = T1, then for
each x1 ∈ B we obtain that T3x1 = limn→∞ an2x1 = limn→∞(an − an1)x1 =
(T1− E(Te))x1. Cosequently, T1− E(Te) ∈ N , T3 = LT1−E(Te) and

T =

[
LE(Te) 0

LT1−E(Te) LE(Te)

]
∈ K.

�
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Abstract. The object of this paper is to study the existence of an
important orbit in a generalized Liénard type system. This trajectory is
doubly asymptotic to an equilibrium solution, i.e., an orbit which lies in
the intersection of the stable and unstable manifolds of a critical point.
Such an orbit is called a homoclinic orbit.

1. Introduction

Consider the planar system

ẋ = P (Q(y)− F (x))

ẏ = −g(x),
(1.1)

which is a generalized Liénard type system, where P , Q, F and g are continu-
ous functions satisfying suitable assumptions in order to ensure the existence
of a unique solution to the initial value problems. Moreover, suppose that
the following assumptions hold under which the origin is the unique critical
point of system (1.1).
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P (u) and Q(y) are strictly increasing and F (0) = P (0) =
Q(0) = 0, uP (u) > 0 for u 6= 0, yQ(y) > 0 for y 6= 0 and
xg(x) > 0 for x 6= 0.

System (1.1) includes the classical Liénard system as a special case, which
is of great importance in various applications.

Definition 1.1. In system (1.1), a trajectory is said to be a homoclinic
orbit if its α− and ω−limit sets are the origin (see Fig. 1.1).

Figure 1. Homoclinic Orbit

The main purpose of this paper is to give an implicit necessary and suf-
ficient condition and some explicit sufficient conditions on F (x), g(x), P (u)
and Q(y) under which system (1.1) has homoclinic orbits. These results
extend and improve the results presented for special cases of system (1.1) in
[1, 3, 4].

The curve Γ = {(x, y)|y = Q−1(F (x))} is called the characteristic curve
of (1.1). Let

Γ1 = {(x, y)|y = Q−1(F (x)) and x > 0},
and

Γ2 = {(x, y)|y = Q−1(F (x)) and x < 0}.
Then, Γ = Γ1

⋃
Γ2

⋃
(0, 0). Positive and negative orbits of (1.1) passing

through p ∈ R2 are shown by O+(p) and O−(p), respectively.
The following definitions are presented to state our main results.

Definition 1.2. System (1.1) has property (Z+
1 ) (resp., (Z+

3 )) if there ex-
ists a point p(x0, y0) ∈ Γ1 (resp., p(x0, y0) ∈ Γ2), such that the O+(p) of
(1.1) starting at p approaches the origin through only the first (resp., third)
quadrant (see Fig. 1.2).

Definition 1.3. System (1.1) has property (Z−
2 ) (resp., (Z−

4 )) if there exists
a point p(x0, y0) ∈ Γ2 (resp., p(x0, y0) ∈ Γ1), such that the O−(p) of (1.1)
starting at p approaches the origin through only the second (resp., fourth)
quadrant.

If system (1.1) has both properties (Z+
1 ) and (Z−

2 ), then a homoclinic orbit
exists in the upper half-plane. Similarly, if system (1.1) has both properties
(Z+

3 ) and (Z−
4 ), then a homoclinic orbit exists in the lower half-plane.

In the next section an implicit necessary and sufficient condition and some
explicit sufficient conditions are provided for system (1.1) to have property
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Figure 2. Property (Z+
1 )

(Z+
1 ). Since some nonlinear functions are added to the classical Liénard

system in this article, our results are proper extensions of the known ones
in [1], [2], [3] and [4].

2. Necessary and Sufficient Conditions for Property of (Z+
1 )

In this section we will give necessary and sufficient conditions for system
(1.1) to have properties (Z+

1 ) and (Z−
2 ). First, consider the following lemma

about asymptotic behavior of solutions of (1.1).

Lemma 2.1. For each point H(c,Q−1(F (c))) with c > 0 or c < 0, the
positive or negative semi-orbit of (1.1) starting at H crosses the negative
y-axis if the following condition hold.
(A1) There exists a δ > 0 such that F (x) < 0 for −δ < x < δ or F (x) has
an infinite number of positive zeroes clustering at x = 0.

Hereafter we assume that there exists a δ > 0 such that F (x) > 0 for
−δ < x < δ.

Theorem 2.2. System (1.1) has property (Z+
1 ) if and only if there exist a

constant δ > 0 and a continuous function φ(x) such that

0 ≤ φ(x) < F (x) and

∫ x

0

−g(η)

P (φ(η)− F (η))
dη ≤ Q−1(φ(x)) (2.1)

for 0 < x < δ.

Remark 2.3. For P (u) = u, Theorem 2.2 gives the corresponding result of
Sugie in [4].

Corollary 2.4. Suppose that there exists k ∈ (0, 1) and δ > 0 such that

1

Q−1(kF (x))

∫ x

0

−g(η)

P ((k − 1)F (η))
dη ≤ 1 for 0 < x < δ. (2.2)

Then, system (1.1) has property (Z+
1 ).

Remark 2.5. For P (u) = u and Q(y) = y and taking k = 1
2 , Corollary 2.4

gives the result of Hara and Yoneyama in [2].
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3. Homoclinc Orbit

In this section some results will be presented about the existence of ho-
moclinic orbit in the upper half-plane for system (1.1).

Theorem 3.1. System (1.1) has homoclinic orbit in the upper half-plane if
and only if there exist a constant δ > 0 and a continuous function φ(x) such
that

0 ≤ φ(x) < F (x) and

∫ x

0

−g(η)

P (φ(η)− F (η))
dη ≤ Q−1(φ(x)) (3.1)

for 0 <| x |< δ.

The following corollary are obtained from Theorem 3.1, which provide
explicit conditions for system (1.1) to have homoclinic orbit in upper half-
plane. Note that, it is assumed that there exists a δ > 0 such that F (x) > 0
for −δ < x < δ.

Corollary 3.2. Suppose that there exist k ∈ (0, 1) and δ > 0 such that

1

Q−1(kF (x))

∫ x

0

−g(η)

P ((k − 1)F (η))
dη ≤ 1 for 0 <| x |< δ. (3.2)

Then, system (1.1) has homoclinic orbit in the upper half-plane.

Remark 3.3. Suppose that F is an even and g is an odd function. It is easy to
see that system (1.1) has property (Z+

1 ) if and only if it has property (Z−
2 ).

Therefore, if system (1.1) has property (Z+
1 ), then it has a homoclinic orbit

in the upper half-plane.

Example 3.4. Consider the following Gause-type Predator-Prey system

u̇ = ur(u)− vsf(u)

v̇ = v(q(u)−D),
(3.3)

with f(u) = u, r(u) = β− γ|u−α|, q(u) = u2, D = α2 and β > αγ. System
(3.3) has the positive equilibrium E∗ = (α, β). By the change of variables

x = u− α, y = lnβ − ln v and dt = uds,

system (3.3) will be transformed into system (1.1) with

P (u) = u, Q(y) = β(1− e−y), F (x) = γ|x|, g(x) = x+ α− α2

x+ α
.

Functions F (x) and g(x) are defined on (−α,+∞) and satisfy F (0) = 0 and
xg(x) > 0 for x 6= 0. Also, Q(y) is defined on R satisfying Q(0) = 0 and

yQ(y) > 0 for y 6= 0. The inverse function of Q(y) is Q−1(y) = ln(
β

β − y
)

where defined on (−∞, β). For 0 < x <
β

kγ
, by using Corollary 3.2 and
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choosing k =
1

2
, it can be concluded that

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη <

8β

γ2
.

If 0 < 8β ≤ γ2, then

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη < 1.

By a similar argument, it can be shown that for −α < x < 0

1

(1− k)Q−1(kF (x))

∫ x

0

g(η)

P (F (η))
dη < 1.

Therefore, by Corollary 3.2 this system has a homoclinic orbit in the upper
half-plane (see Fig. 4.1).

Figure 3. Phase portrait for system (3.3) with α = 0.2, β =
0.75 and γ = 3.

Remark 3.5. Sugie and Kimoto in [5], under the assumption Q(y) ≤ my
for y > 0, showed that system (1.1) with functions in (??) has homoclinic
orbits in the upper half-plane if 0 < 8β ≤ γ2. In this work, the existence
of homoclinic orbits has been presented without the assumption Q(y) ≤ my
for y > 0.
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Abstract. It is well known that dynamical systems are very useful
tools to study the viral disease such as HIV, HBV, HCV, Ebola and
Influenza. This paper deals with a mathematical model of the cell-
to-cell and the cell-free spread of HIV with both linear and nonlinear
functional responses and logistic target cell growth. The reproduction
number of each mode of transmission has been calculated and their sum
has been considered as the basic reproduction number. Based on the
values of the reproduction number, the local and global stability of the
rest points have been investigated.

1. Introduction

Over decades, human societies have been affected by human immunod-
eficiency virus (HIV). HIV viruses attack the body’s immune system and
destroy a type of target cells known as CD4+ T-cells. Studies have shown
that HIV infection in humans came from a type of chimpanzee in Africa.
Today, HIV infection is a contagious disease that can be transmitted from
person to person. If HIV is not treated, it can lead to acquired immunodefi-
ciency syndrome (AIDS). Unfortunately, there is currently no effective cure
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and only with proper medical care patients may have a better quality of life.
In recent years, some mathematical models have been proposed to investi-
gate the distribution of disease and to describe epidemic illnesses related to
AIDS ([1]).

Song and Neumann in [5] studied the spread of HIV by model

dT (t)

dt
= s− dT + aT (1− T

TM
)− βTV

1 + αV
,

dI(t)

dt
=

βTV

1 + αV
− δI,

dV (t)

dt
= pI − cV,

(1.1)

where T (t), I(t) and V (t) represent the number of target cells, the number
of infected cells and viral load of the virus, respectively. δ is the loss rate
constant of infective cells, p is virus production rate for infected cell, c is
the clearance rate constant of free viruses, s represents the rate at which
new T cells are created from the source within the body, rate of infection
is given by βTV , a is the maximum proliferation rate of target cells, TM is
the population density at which proliferation shuts off, d is the death rate
of T cells and α > 0 is constant for saturated mass action.

Motivated by the works of Lai and Zou in [4] and Song and Neumann in
[5], in the present work, we shall study the following model of HIV infection
with logistic target cell growth and two predominant transmission. Using
the same notations as in [5], we investigate the model

dT (t)

dt
= s− dT + rT (1− T

TM
)− b1TV

1 + aV
− b2TI,

dI(t)

dt
=

b1TV

1 + aV
+ b2TI − δI,

dV (t)

dt
= hI − lV,

. (1.2)

The rest of the paper is organized as follows. Section 2 deals with some
basic results e.g., boundedness and non-negativity of the solutions, the basic
reproduction number and the existence of equilibria. The stability of the
equilibria are considered in section 3. Some of the results are illustrated
numerically in section 4.

2. Equilibria and basic results

In this section, the basic properties of the solutions of (1.2) will be pre-
sented. There exists an infection-free equilibrium E1(T1, 0, 0) where

T1 =
TM
2r

[
r − d+

√
(r − d)2 +

4rs

TM

]
,

which represents the state of system (1.2) without viruses.
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Theorem 2.1. Starting from non-negative initial points, all solutions of
(1.2) exist for all t > 0 and remain bounded and non-negative.

To state our main results, the following definition will be needed.

Definition 2.2. The basic reproduction number R0 is defined as the ex-
pected number of secondary infections produced by an index case in a com-
pletely susceptible body cells.

According to the concept of next-generation matrix in Diekmann et al.
([2]) and the production number presented in van den Driessche and Wat-
mough ([6]), we can compute the basic reproduction number of (1.2) as

R0 = R01 + R02, where R01 =
b1h

lδ
T1, R02 =

b2
δ
T1,

where T1 =
(r − d+

√
∆

2r

)
TM and ∆ = (r − d)2 +

4rs

TM
.

By the values of R0, the local and the global stability of the equilibrium
points of (1.2) will be studied in the next sections.

In the following, a theorem about the existence of the rest points of (1.2)
will be presented.

Theorem 2.3. System (1.2) has a unique infection-free equilibrium E1(T1, 0, 0)
if R0 ≤ 1. Except for E1, if R0 > 1, then (1.2) has a unique positive (en-
demic) equilibrium E2(T2, I2, V2) with T2 ∈ (0, T1) where

I2 =
l

h
V2 and V2 =

1

a

R0T2 − T1
T1 −R02T2

. (2.1)

Remark 2.4. By attention to (2.1), it can be concluded that the infected
equilibrium E2(T2, I2, V2) exists if and only if R0T2 > T1 > R02T2.

3. Stability of Model

In this section, the local asymptotic stability of equilibria of (1.2) will be
considered. Next, under certain conditions, the global asymptotic stability
of E1 will be investigated.

Theorem 3.1. If R0 < 1, then the infection-free equilibrium E1 is locally
asymptotically stable. If R0 > 1, then E1 is unstable.

Theorem 3.2. If R0 < 1, then E1(T1, 0, 0) is globally asymptotically stable.

In the sequel, the global stability of E2 will be presented.

Theorem 3.3. Suppose that R0 > 1. Then, the endemic equilibrium E2 is
globally asymptotically stable.

Proof. Define a Lyapunov function as

L(T, I, V ) = T − T2 − T2 ln
T

T2
+ I − I2 − I2 ln

I

I2

+
b1T2V2

hI2(1 + aV2)

(
V − V2 − V2 ln

V

V2

)
.
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Computing the derivative of L(T, I, V ) along the positive solutions of (1.2),
it can be written that

dL

dt
|(3)=

(
1− T2

T

)
Ṫ +

(
1− I2

I

)
İ +

b1T2V2
hI2(1 + aV2)

(
1− V2

V

)
V̇ . (3.1)

Therefore, from (3.1) and equilibrium conditions, it can be obtained that

dL

dt
|(3)= −

[
d− r + r

(
T + T2
TM

)]
(T − T2)2

T

− b1T2V2
1 + aV2

[
a(V − V2)2

(1 + aV2)(1 + aV )V2

]
+
b1T2V2
1 + aV2

[
4− T2

T
− IV2
I2V

− 1 + aV

1 + aV2
− TV (1 + aV2)I2
T2V2(1 + aV )I

]
+ b2T2I2

[
2− T

T2
− T2
T

]
.

(3.2)

By (3.2), it can be concluded that
dL

dt
≤ 0 for all T, I, V > 0. Hence, the

endemic equilibrium E2 is stable. On the other hand,
dL

dt
= 0 if and only if

T = T2, I = I2 and V = V2. Let Ω be the largest invariant set in

Ψ = {(T, I, V ) | L̇ = 0} = {E2}.

We have that Ω = {E2}. The global asymptotically stability of E2 follows
from LaSalle’s invariance principle ([3]). �

4. Numerical simulations

In this section, using the standard Matlab differential equations integrator
for the Runge–Kutta method (ODE45), the numerical simulation of (1.2)
will be studied. The stability of first equilibrium E1(1166.8560, 0, 0) can be
seen in Fig. 1. It is obtained for the parametric values

s = 2, r = 0.2, TM = 1200, d = 0.01, b1 = 0.0006,

b2 = 0.0004, a = 0.00005, δ = 0.8, h = 0.15, l = 2.4.

In this case, R0 = 0.6291 < 1 and the infection free equilibrium E1 is
asymptotically stable. Hereafter, we consider a set of parameters

s = 2, TM = 1200, d = 0.01, b1 = 0.11,

b2 = 0.004, a = 0.00005, δ = 0.8, h = 0.15, l = 2.4

and different values of r. Our numerical analysis shows that for r = 0.3,
the endemic equilibrium E2(73.5672, 27.4768, 1.7173) is asymptotically sta-
ble (See Fig. 2). In this case, R0 = 15.8619 > 1 and eigenvalues of the
characteristic equation are λ1 = −0.0026 + 0.3871i, λ2 = −0.0026− 0.3871i
and λ3 = −2.9460.
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Figure 1. Solution trajectories as functions of time, tending to stable equi-
librium E1(1166.8560, 0, 0) (r = 0.2, R0 = 0.6291 < 1 ).

Figure 2. Solution trajectories as functions of time, tending to stable equi-
librium E2(73.5672, 27.4768, 1.7173) (r = 0.3, R0 = 15.8619 > 1 ).
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Abstract. In this article, we are going to introduce sense of approxi-
mate convexity as approximate pseudoconvexity and approximate qua-
siconvexity for set-valued maps. Also, we consider a set-valued opti-
mization problem and we investigate relations among solutions of this
problem and solutions of generalized Minty and Stampacchia variational
inequalities.

1. Introduction

The concept of convexity is very important in optimization theory as a
local minimum for a convex function becomes global minimum. In order
to generalize the concept of convexity Jofre et al. [4] defined the notion of
convexity and by using it Ngai et al. [5] presented the concept of approx-
imate convexity which consists of several useful and interesting properties
of convex functions. Daniilidis and Georgiev [2] showed that a locally Lips-
chitz function is approximate convex if and only if its Clarke subdifferential
is a submonotone operatore. Variational inequality theory was introduced
by Hartman and Stampacchia (1966) as a tool for the study of partial dif-
ferential equations with applications principally drawn from mechanics.
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Let X and Y be two Banach spaces and X∗ be topological dual space of X.
The norm in X and X∗ will be denoted by ∥ . ∥. Also, suppose that BX is
the closed unit ball of X, and K ⊂ Y is a closed convex cone.

Definition 1.1. [3] Let F : X ⇒ Y be a set-valued mapping between two
Banach spaces and (x̄, ȳ) ∈ grF . Then the Normal coderivative of F at (x̄, ȳ)
is the set-valued mapping D∗

NF (x̄, ȳ) : Y ∗ ⇒ X∗ (D̂∗F (x̄, ȳ) : Y ∗ ⇒ X∗)
given by

D∗
NF (x̄, ȳ)(y∗) := {x∗ ∈ X∗|(x∗,−y∗) ∈ N((x̄, ȳ); grF )}.

Definition 1.2. [1] Let F : X ⇒ Y be a set-valued mapping. Then the
Normal subdifferential of F at the point (x̄, ȳ) ∈ epiF in the direction y∗ ∈
Y ∗ is defined by ∂F (x̄, ȳ)(y∗) := D∗

NEF (x̄, ȳ)(y∗).

In the following, we present a generalization of approximate convexity for
set-valued maps.

Definition 1.3. Let Ω ⊂ X be a convex set and F : Ω ⊂ X ⇒ Y . F is
said to be approximately K-convex at x0 ∈ domF if for every α > 0 there
exists δ > 0 (depending on x0 and α) such that for all x1, x2 ∈ B(x0, δ) and
t ∈ [0, 1], one has
tF (x1) + (1− t)F (x2) + αt(1− t)∥x1 − x2∥e ⊆ F (tx1 + (1− t)x2) +K,

for a e ∈ intK with ∥e∥ = 1.

Remark 1.4. Let Ω ⊂ X be a convex set and F : Ω ⊂ X ⇒ Y .
• F is said to satisfy Condition (AC)1 at x0 ∈ domF if for every α > 0

there exists δ > 0 such that for any xi ∈ B(x0, δ), y∗ ∈ K+ ∩ SY ∗

and yi ∈ F (xi), (i = 1, 2), one has
< ξ, x2 − x1 > −α∥x2 − x1∥ ≤ y∗(y2)− y∗(y1),

for some ξ ∈ ∂F (x1, y1)(y
∗).

• F is said to satisfy Condition (AC)2 at x0 ∈ domF if for every α > 0
there exists δ > 0 such that for any xi ∈ B(x0, δ), y∗ ∈ K+ ∩ SY ∗ ,
yi ∈ F (xi), (i = 1, 2), and ξ ∈ ∂F (x1, y1)(y

∗) one has
< ξ, x2 − x1 > −α∥x2 − x1∥ ≤ y∗(y2)− y∗(y1).

2. Mean Results

In this section, we give some difinitions of generalized approximate con-
vexity and generalized variational inequalities.

Definition 2.1. Let Ω ⊂ X be a convex set. A set-valued map F : Ω ⊆
X ⇒ Y is said to be

• approximate pseudoconvex of type I around x0 ∈ domF , if for all
α > 0, there exists δ > 0 such that for all xi ∈ B(x0, δ) ∩ Ω, y∗ ∈
K+ ∩ SY ∗ and yi ∈ My∗(xi), (i = 1, 2), if

< ξ, x1 − x2 >≥ 0, for some ξ ∈ ∂F (x2, y2)(y
∗),
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then
y∗(y1)− y∗(y2) ≥ −α∥x1 − x2∥.

• approximate pseudoconvex of type II around x0 ∈ domF , if for all
α > 0, there exists δ > 0 such that for all xi ∈ B(x0, δ) ∩ Ω, y∗ ∈
K+ ∩ SY ∗ and yi ∈ My∗(xi), (i = 1, 2), if

< ξ, x1 − x2 > +α∥x1 − x2∥ ≥ 0, for some ξ ∈ ∂F (x2, y2)(y
∗),

then
y∗(y1) ≥ y∗(y2).

Definition 2.2. Let Ω ⊂ X be a convex set. A set-valued map F : Ω ⊆
X ⇒ Y is said to be

• approximate quasiconvex of type I around x̄ ∈ domF , if for all α > 0,
there exists δ > 0 such that for all xi ∈ B(x̄, δ) ∩ Ω, y∗ ∈ K+ ∩ SY ∗

and yi ∈ My∗(xi), (i = 1, 2), if

y∗(y1) ≤ y∗(y2),

then

< ξ, x1 − x2 > −α∥x1 − x2∥ ≤ 0, ∀ξ ∈ ∂F (x2, y2)(y
∗).

• approximate quasiconvex of type II around x̄ ∈ domF , if for all α > 0
there exists δ > 0 such that for all xi ∈ B(x̄, δ) ∩ Ω, y∗ ∈ K+ ∩ SY ∗

and yi ∈ My∗(xi), (i = 1, 2), if

y∗(y1) ≤ y∗(y2) + α∥x1 − x2∥,

then
< ξ, x1 − x2 >≤ 0, ∀ξ ∈ ∂F (x2, y2)(y

∗).

Definition 2.3. A set-valued mapping ∂F : X × Y × Y ∗ ⇒ X∗ is said to
be approximate α-monotone around x̄ ∈ domF , if for all α > 0, there exists
δ > 0 such that for each xi ∈ B(x̄, δ) ∩ Ω, y∗ ∈ K+ ∩ SY ∗ , yi ∈ My∗(xi),
ξ ∈ ∂F (xi, yi)(y

∗), (i = 1, 2), one has

< ξ2 − ξ1, x2 − x1 >≥ −α∥x2 − x1∥,

Now, we consider the following optimization problem:

minF (x), subject to x ∈ domF, (2.1)
where F : Ω ⊆ X ⇒ Y .
The next two definitions are allocated solutions of problem (2.1).

Definition 2.4. A point (x̄, ȳ) ∈ grF is said to be a scalarized locally quasi
efficient solution (SLQE) of problem (2.1) iff there exist α > 0 and δ > 0,
such that for any y∗ ∈ K+\{0}, x ∈ B(x̄, δ) ∩ Ω and y ∈ F (x), one has

y∗(ȳ) ≤ y∗(y) + α∥x− x̄∥.
130



Z. KEFAYATI∗AND M. OVEISIHA

Definition 2.5. A point (x̄, ȳ) ∈ grF is said to be locally weak quasi effi-
cient solution (LWQE) of problem (2.1) iff there exist α > 0 and δ > 0, such
that

(F (x)− ȳ) ∩ (−α∥x− x̄∥e− intK) = ∅, ∀x ∈ B(x̄, δ) ∩ Ω.

The next lemma gives a relation between (SLQE) and (LWQE).

Lemma 2.6. Every solution of (SLQE) is a (LWQE) of problem (2.1).

Now, we consider the following generalized Minty and Stampacchia in-
equality:
(GMV IP ) : Generalized Minty variational inequality problem consists of
finding a vector x̄, such that for any α > 0 there exists δ > 0 such that
for any x ∈ B(x̄, δ) ∩ Ω and y∗ ∈ K+ ∩ SY ∗ , there exist y ∈ My∗(x) and
ξ ∈ ∂F (x, y)(y∗) that

< ξ, x̄− x >≤ α∥x− x̄∥.

(GSV IP ) : Generalized Stampacchia variational inequality problem consists
of finding a vector x̄, such that for an α > 0, there exists δ > 0, such that
for each x ∈ B(x̄, δ) ∩ Ω and y∗ ∈ K+ ∩ SY ∗ there exists ȳ ∈ My∗(x̄) and
ξ ∈ ∂F (x̄, ȳ)(y∗) that

< ξ, x− x̄ >≥ −α∥x− x̄∥.

In the next theorem, we prove relation between (SLQE) and (GMVIP).

Theorem 2.7. Suppose that F : Ω ⊆ X ⇒ Y satisfies condition (AC)2. If
x̄ is a solution of (SLQE), then it is a solution of (GMVIP).

In the following, we investigate relation between (GSVIP) and (SLQE)
by two theorems.

Theorem 2.8. Let x̄ be a solution of (GSVIP) with respect to α and F be
approximate pseudoconvex of type II around x̄ ∈ domF . Then x̄ ∈ (SLQE).

Theorem 2.9. Let x̄ ∈ (SLQE) and F be approximate quasiconvex of type
II around x̄. Then x̄ is a solution of (GSVIP) with respect to same α.

In the finally, we prove that a solution of (GSVIP) can be a solution of
(GMVIP).

Theorem 2.10. Let x̄ be a solution of (GSVIP) with respect to α and ∂F
be approximate α-pseudomonotone. Then x̄ is a solution of (GMVIP) with
respect to same α.
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Abstract. In this paper, we introduce the concept of the Jensen-
Hosszu ρ−functional equations between Banach algebras and we investi-
gate it as an additive equation. Also, we prove the Hyers-Ulam stability
of Jensen-Hosszu ρ−functional equations between Banach algebras.

1. Introduction

In 1940, Ulam[10] presented some unsolved problems, and among them
posed the following question. ”when is it true that a function which approx-
imately satisfies a functional equation must be close to an exact solution
of the equation? ” Ulam raised the stability of functional equations and
Hyers[2] in 1941 was the first one which gave an affirmative answer to the
question of Ulam for additive mapping between Banach spaces.
In 1967, M. Hosszu introduced the functional equation f(x + y − xy) =
f(x) + f(y)− f(xy) in a presentation at a meeting on functional equations
held in Zakopane, Poland. In honor of M. Hosszu, this equation is called
Hosszu’s functional equation. As one can easily see, Hosszu’s functional
equation is a kind of generalized form of the f(x + y) = f(x) + f(y) func-
tional equation. In 1996, L. Losonczi [9] proved the Hyers-Ulam stability of
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the Hosszu equation in the class of real functions and expressed the following
theorem.

Theorem 1.1. (L. Losonczi) Let E be a Banach space and suppose that
f : E → E satisfies the inequality

‖f(x+ y − xy)− f(x)− f(y) + f(xy)‖ ≤ δ (x, y ∈ R)

for some δ ≥ 0. Then there exists an additive function T : E → E and a
unique constant b ∈ E such that

‖f(x)− T (x)− b‖ ≤ 20δ

for all x ∈ E.

Many authors have searched the stability of Cauchy, Jensen and Hosszu
equation based on the concept of Hyers-Ulam stability (see [1, 3, 4, 5, 6, 7,
8]).

In the following we defined Jensen-Hosszu ρ−functional equation on Ba-
nach algebras.
Let A and B are two Banach algebras, let a mapping f : A→ B satisfies

f(x+ y − xy) + f(xy)− 2f(
x+ y

2
) = ρ

(
f(x+ y − xy) + f(xy)− f(x+ y)

)
(1.1)

and

f(x+ y − xy) + f(xy)− f(x+ y)− ρ
(
f(x+ y − xy) + f(xy)− 2f(

x+ y

2
)
)

(1.2)

where ρ 6= 0,±1 is a fixed real number and for all x, y ∈ A, then we called
Jensen-Hosszu ρ−functional equation.
In this work, we solve the functional equations of the form (1.1) and (1.2)
in the class of real functions as an additive equation and prove them with
the above ideas theorems have stable in the Hyers–Ulam sense.

2. Stability of Jensen-Hosszu ρ−functional equation

In this section, let A and B are two Banach algebras. Firstly, in the next
lemma, we solve that f is an additive mapping.

Lemma 2.1. If a mapping f : A→ B satisfies

f(x+y−xy)+f(xy)−2f(
x+ y

2
) = ρ

(
f(x+y−xy)+f(xy)−f(x+y)

)
(2.1)

for all x, y ∈ A and ρ 6= 0,±1 is a fixed real number, then the mapping f is
an additive equation.

In the following theorem, the functional equation (1.1) can be stable in
Banach algebras.
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Theorem 2.2. Let f : A→ B be a mapping such that∥∥∥f(x+y−xy)+f(xy)−2f(
x+ y

2
)−ρ

(
f(x+y−xy)+f(xy)−f(x+y)

)∥∥∥ ≤ δ
(2.2)

where ρ 6= 0,±1 is a fixed real number, for some δ ≥ 0 and for all x, y ∈ A.
Then there exists a unique additive T : A→ B such that

‖f(x)− T (x)‖ ≤ 1

2
δ

for all x ∈ A.

In the next lemma, we solve that f is an additive mapping.

Lemma 2.3. If a mapping f : A→ B satisfies

f(x+y−xy)+f(xy)−f(x+y) = ρ
(
f(x+y−xy)+f(xy)−2f(

x+ y

2
)
)

(2.3)

for all x, y ∈ A and ρ 6= 0,±1 is a fixed real number, then the mapping f is
an additive equation.

In the following theorem, we investigate Hyers-Ulam staility of functional
equation (1.2) in Banach algebras.

Theorem 2.4. Let f : A→ B be a mapping such that∥∥∥f(x+y−xy)+f(xy)−f(x+y)−ρ
(
f(x+y−xy)+f(xy)−2f(

x+ y

2
)
)∥∥∥ ≤ δ

(2.4)
where ρ 6= 0,±1 is a fixed real number, for some δ ≥ 0 and for all x, y ∈ A.
Then there exists a unique additive T : A→ B such that

‖f(x)− T (x)‖ ≤ δ
for all x ∈ A.

3. Conclusions

We introduced the new concept of Jensen-Hosszu ρ-functional equations
in Banach algebras and in the lemmas we investigated it as an equal to an
additive equation and in the main theorems, we proved that the Jensen-
Hosszu ρ-functional equations can be stable in Banach algebras.
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Abstract. We study the evolutionary dynamic of population, com-
posed of two kinds of individuals, distributed randomly. In this game,
evolution takes place in different periods of time between individuals fre-
quently. We present a continuous nonlinear operator, which describes
and fulfills this discrete time evolutionary game. Furthermore, we set up
the adequate mathematical framework to obtain the fixed point of this
operator. Based on this equilibrium state of the evolutionary operator,
it is proved the possessions of the individuals vanish.

1. Introduction

The population is composed of individuals which can have two differing
“life strategies”, and the success or failure of these strategies has a direct
consequence upon the continued reproductive success of the individuals[1].
In the last years, some different techniques and models, from statistical
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physics, have been applied successfully to some real data observed in econ-
omy [2]. Different models have been used to explain the origin of these
wealth distributions. A kind of models considering this unknowledge asso-
ciated to markets are the gas-like models [3]. In order to explain the two
different types of statistical behavior before mentioned, different gas-like
models have been proposed. On the one hand, the exponential distribution
can be obtained by supposing a gas of agents that trade with money in
binary collisions, or in first-neighbor interaction, and where the agents are
selected in a random, deterministic or chaotic way [4].
Alongside this approach, however, there has also emerged a significant lit-
erature that seeks to extend such evolutionary dynamics to games with
nonlinear operators [5]. This paper seeks to address further this lacuna and
provide foundations to the nonlinear operators for games with two kinds of
player (or equivalently agent) that compete together for obtaining wealth.
We construct an operator that governs the discrete time evolution of the
wealth distribution in population that is composed of two kinds of individ-
uals, say type F (Fight) and type Y (Yield), distributed randomly which
interact by pairs and exchange their money in a random way. It is shown
the previous model [6] describing exponential wealth distribution in a ran-
dom market is the special case of present model if we omit the individuals
of type F (Fight).
The rest of the paper is structured as follows: In section 2, we introduce
the nonlinear model for population games with two kind of players, section
3 establishes the fundamental mathematical properties of the operator T .
Finally, a conclusion is given in section 4.

2. Nonlinear model

We consider an ensemble of economic agents (individuals or equivalently
players) in two categories (Yields and Fights) which trading their money
by pairs in a random manner. There are three kinds of trading between
players (individuals) which are as follows by first, second and third cases.
Before that, in all following cases, we notice that ε is a number in the
interval (0, 1). Moreover, the agents (i, j) are randomly chosen. Finally,
their initial money (mi,mj), at timet, is transformed after the interaction

into
(
m′i ,m

′
j

)
at time t + 1.

The continuous version of this model considers the evolution of an initial
wealth distribution p0(m) at each time step n under the action of an operator
T . Thus, the system evolves from time n to time n + 1 to asymptotically
reach the equilibrium state of zero wealth, i.e.

lim
n→∞

Tn(p0(m))→ 0 (2.1)

The derivation of the operator T is as follows [6]. Suppose that pnis the
wealth distribution in the ensemble at time n. The probability to have
a quantity of money x at time n + 1 will be the sum of the probabilities
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of all those pairs of agents (u, v) able to produce the quantity x after their
interaction, that is, all the pairs verifying u+v > x in the first case and third
case and all the pairs verifying u + v − c > x in the second case. Thus, the
probability that two of these agents with money (u, v) interact between them
is pn(u)∗pn(v). Their exchange is totally random and then they can give rise
with equal probability to any value xcomprised in the interval (0, u + v) for
the first and third cases, and (0, u + v) for the second case. Therefore, the
probability to obtain a particular x (with x < u+v or x+ c < u+v) for the

interacting pair will be pn(u)∗pn(v)
u+v . Then, we present the general continuous

nonlinear operator for discrete time evolutionary game (it is more general
than that considered in [8-10]), which comes from the combination of the
above three cases, as following form

pn+1(x) = Tpn(x)

= 1
3

∫∫
u+v>x

pn(u)pn(v)
u+v dudv + 1

3

∫∫
u+v>x

pn(u)pn(v)
u+v dudv

+1
3

∫∫
u+v>x+c

pn(u)pn(v)
u+v dudv

(2.2)

The right hand terms are related to cases (Yield, Yield), (Fight, Yield) and
(Fight, Fight), respectively. if we assume c = 0 where we look to Yield and
Fight as the same player.

3. Mathematical properties of the operator

Definition 3.1. We introduce the space L+
1 of positive functions (wealth

distributions) in the interval [0,∞),

L+
1 [0,∞) = {y : [0,∞)→ R+ ∪ {0}, ‖y‖ <∞}, (3.1)

with norm-1

‖y‖ =

∫ ∞
0

y(x)dx. (3.2)

In particular, consider the subset of L+
1 [0,∞) i.e. the unit sphere

B =
{
y ∈ L+

1 [0,∞), ‖y‖ = 1
}
.

Definition 3.2. For x ≥ 0and y ∈ L+
1 [0,∞) the action of operator Ton y

is defined by

T (y(x)) = 1
3

∫∫
S(x)

y(u)y(v)
u+v dudv + 1

3

∫∫
S(x)

y(u)y(v)
u+v dudv

+ 1
3

∫∫
Sc(x)

y(u)y(v)
u+v dudv

(3.3)

where S(x)and Sc(x) are the regions of the plane representing the pairs
of agents (u, v) which can generate a richness x after their trading, i.e.

S(x) = {(u, v), u, v > 0, u + v > x}
Sc(x) = {(u, v), u, v > 0, u + v > x + c}

If there was not cost c for any of agents which are trading money, operator
Tdefined in (3.3) conserves the norm (|| · ||), i.e. T maintains the total
number of agents (those agents which are active in game) of the system, i.e.
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‖Tp‖ = ‖p‖ = 1, that by extension implies the conservation of the total
richness of the system. However, in the present model, T does not maintain
the total numbers of agents, which are active in game, because some of them
lose their total money, in the other word, their money vanish. Therefore, it
is credible to expect ‖Tp‖ < ‖p‖ .

Lemma 3.3. We claim that for anyy ∈ L+
1 [0,∞) and c > 0,

c

∫ ∞
c

∫ ∞
c

y(u)y(v)

u + v
dudv < ‖y‖2 .

Theorem 4. For any y ∈ L+
1 [0,∞) we have

||Ty|| ≤ ||y||2 − c

∫ ∞
c

∫ ∞
c

y(u)y(v)

u + v
dudv.

It means that the number of active agents in the economic system is not
conserved in time .i.e. in the unit sphere B, we observe that if y ∈ B then
Ty /∈ B.

Theorem 3.4. Consider the unit sphereB = {y ∈ L+
1 [0,∞), ‖y‖ = 1}, if

y ∈ B then yn+1(x) = Tyn(x) = Tny(x) is a decreasing operator respected
to norm-1 while it remains always yn(x) ∈ L+

1 [0,∞) .

Corollary 3.5. Suppose that y ∈ B then the system asymptotically reach
the equilibrium distribution 0, i.e.

lim
n→∞

Tn(y(x))→ 0.

4. Conclusion

Summarizing, in population that is composed of two kinds of individual
which compete together in dual market randomly by trading their money.
We have introduced a continuous nonlinear operator and then obtained the
fixed point of this operator. Based on this equilibrium state of the evolution-
ary operator, it has been proved the possession of the individuals vanishes.
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Abstract. A generalization of the continuous economic model is pro-
posed for random markets. In this model, agents interact by pairs and
exchange their money in a random way, in general, with possibly non-
constant total amount of “money”. This model takes the form of an
iterated nonlinear map of the distribution of wealth. We show the only
way to reach equilibrium fixed point distribution is the agents to share
their money without expansion or contraction factor.

1. Introduction

Recently, based on the idea of pseudo-gases, a control parameter that
shows the degree of exchanges between economic factors has been considered
in the interval [0,1], that is, if the value of the parameter is zero, there
is no interaction between the factors, and if it is one, all factors interact
under these conditions. They have reached the conclusion that the Gibbs
exponential distribution is established for the mentioned interval [1]. The
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relationship and behavior of the moments when they are not convergent
have been investigated on the model [2].
Also, to see the convergence of exponential wealth distribution in discrete
stochastic markets and their complete analysis, you can refer to reference
[3]. A similar model has been proposed for ideal gases, which shows that it
converges to the Maxwell distribution, based on which it has been considered
as the equilibrium point of the operator with the simulations [4]. The upward
growth of entropy for the model in random markets is proof [5]. Following
the works, in this article we have proposed a continuous economic model
for random markets. In the next section, we state a generalization of the
model. Then, we discuss the features of the operator.

2. Generalization of Z-model

In this section, we suggest a general form of Z-model that is similar to the
behavior of original model (Z-model) in which each of the two partners in a
transaction have a random amount u and v. During the transaction, they
put first the whole amount (u + v) in a basket and then share its content
randomly. The new model is defined as

Pn+1(x) = Tpn(x) =

∫∫
Sa,b(x)

dudv
Pn(u)Pn(v)

au+ bv
, (2.1)

where, a and b are real positive parameters, and Sa,b(x) is defined by the
set

{(u, v), u, v > 0, x < au+ bv}
. In this model at the time of the transaction between the two individuals,
one of the individual puts au in the basket (instead of u in the Z-model)
and the other puts bv in the basket, instead of v. As it will be seen, this
model is not conservative except when some special conditions hold for the
coefficientsa and b which will be determined later. If we consider the sym-
metrical interaction for the pair of agents(v, u), in this case the first agent
will put av in the basket and the second one bu. For both trades, those of the
pairs(u, v)and (v, u), the total money to share in the basket is (a+b)(u+v).

3. Properties of the operator T

First, in order to set up the adequate mathematical framework, we provide
the following definitions.

Definition 3.1. We introduce the space L+
1 of positive functions (wealth

distributions) in the interval [0,∞),

L+
1 [0,∞) = {y : [0,∞)→ R+ ∪ {0}, ‖y‖ <∞},

with norm-1

‖y‖ =

∫ ∞

0
y(x)dx.
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In particular, consider the subset of L+
1 [0,∞) i.e. the unit sphere

B =
{
y ∈ L+

1 [0,∞), ‖y‖ = 1
}

Definition 3.2. We define the mean richness < x >y associated to a wealth
distribution y ∈ L+

1 [0,∞) as the mean value of xfor the distributiony. In
the rest of the paper, we will represent it by< y >. Then,

< y >≡< x >y= ‖xy(x)‖ =

∫ ∞

0
xy(x)dx.

Definition 3.3. For x ≥ 0andy ∈ L+
1 [0,∞) the action of the operator Ton

y is defined by

T (y(x)) =

∫∫
Sa,b(x)

y(u)y(v)

au+ bv
dudv

whereSa,b(x) is the region of the plane representing the pairs of agents (u, v)
which can generate a richness x after their trading, i.e.

Sa,b(x) = {(u, v), u, v > 0, au+ bv > x}

Theorem 3.4. For any y ∈ L+
1 [0,∞) we have ‖Ty‖ = ‖y‖2. In particular,

for y being a PDF, i.e. if ‖y‖ = 1, then ‖Ty‖ = 1. (It means that the
number of agents in the economic system is conserved in time).

Theorem 3.5. The operator T is Lipchitz continuous in B with Lipchitz
constant ≤ 2.

Theorem 3.6. The mean value< y >of a PDF y is not conserved in general,
that is it would be possible< Ty > 6=< y > for any y ∈ B. (It means that
the mean wealth, and by extension the total richness, of the economic system
are not preserved in time).

Corollary 3.7. The mean wealth, and by extension the total richness, of
the economic system is preserved in time provided that a+ b = 2.

In the next section, it will be revealed that the total richness increases
when a+ b > 2 and decreases when a+ b < 2.

Theorem 3.8. For anyy ∈ L1
+[0,∞], nεN and a, b ∈ R+it holds

< Tny > − < y > = ((
a+ b

2
)n − 1) < y > .
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Abstract. We study the existence of weak solutions to a (p, q)-biharmonic
elliptic equation involving a singular term under Navier boundary con-
ditions, by using variational methods.

1. Introduction

Stationary problems involving singular nonlinearities, as well as the as-
sociated evolution equations, describe naturally several physical phenomena
and applied economical models. This kind of problems intensively studied
in the last decades, specially with the Steklov boundary conditions [4]. In
the present paper, we consider the following (p, q)-biharmonic problem{

∆2
pu+ ∆2

qu+ θ(x) |u|
s−2u
|x|2s = λf(x, u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω ⊂ RN (N > 2) is a bounded domain with boundary of class
C1 and p, q are positive parameters satisfying the following inequalities
max{2, N/2} < q < p < +∞. And, ∆2

ru := ∆(|∆u|r−2∆u) denotes r-
biharmonic operator for r ∈ {p, q}; θ ∈ L∞(Ω) is a real function with
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infx∈Ω θ(x) > 0; s is a constant such that 1 < s < N/2; λ > 0 is a real
parameter and f : Ω × R → R is a Carathéodory function which holds the
following growth condition:

|f(x, s)| 6 a1 + a2|s|γ−1 (1.2)

for (x, s) ∈ Ω×R, where a1, a2 and γ are positive constants such that γ ≤ p
a.e. in Ω.

2. Basic definitions and preliminary results

Proposition 2.1. [3] Let q ≤ p, a.e. on Ω, then Lp(Ω) ↪→ Lq(Ω); moreover,
there is a constant kq such that |u|q 6 kq|u|p.

We denote the Sobolev space W k,p(Ω) for k = 1, 2, by

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k},

that in which Dαu = ∂|α|

∂α1x1...∂
αN xN

where α = (α1, α2, ..., αN ) is a multi-

index with |α| = ΣN
i=1αi. The space W k,p(Ω) with the norm

‖u‖k,p = Σ|α|≤k|Dαu|p

is a Banach separable and reflexive space. We assume that W 1,p
0 (Ω) is the

closure of C∞0 (Ω) in W 1,p(Ω) which has the norm ‖u‖1,p = |Du|p. In what
follows, we set

X := W 1,p
0 (Ω) ∩W 2,p(Ω),

endowed with the norm ‖u‖ :=
∫

Ω |∆u|
pdx.

Remark 2.2. The embedding X ↪→ C0(Ω) is compact; moreover, there exist
constant L > 0 such that |u|∞ ≤ L‖u‖, where |u|∞ = supx∈Ω u(x).

The next is the classical Hardy-Rellich inequality mentioned in [2].

Lemma 2.3. Let 1 < s < N
2 . Then for u ∈W 1,s

0 (Ω) ∩W 2,s(Ω), one has∫
Ω

|u(x)|s

|x|2s
dx ≤ 1

H

∫
Ω
|∆u(x)|sdx,

where H := (N(s−1)(N−2p)
s2

)s.

Definition 2.4. We say that function u ∈ X is a weak solution of Problem
(1.1) if u = ∆u = 0 on ∂Ω and∫

Ω
|∆u|p−2∆u∆vdx+

∫
Ω
|∆u|q−2∆u∆vdx

+

∫
Ω
θ(x)
|u|s−2

|x|2s
uvdx− λ

∫
Ω
f(x, u)vdx = 0

for every v ∈ X.
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In the sequel, we put

δ(x) = sup {δ > 0 : B(x, δ) ⊆ Ω} and R := supx∈Ωδ(x).

Obviously, there exists x0 = (x0
1, · · · , x0

N ) ∈ Ω such that B(x0, R) ⊆ Ω.

3. Existence result

Let Φ : X → R be a functional defined by

Φ(u) =
1

p

∫
Ω
|∆u|pdx+

1

q

∫
Ω
|∆u|qdx+

1

s

∫
Ω
θ(x)
|u(x)|s

|x|2s
dx,

Remark 3.1. Under the above assumptions, we gain

1

p
‖u‖p ≤ Φ(u) ≤ K(‖u‖p + ‖u‖s)

where K = max{2
s ,

2|θ|∞
Hs }.

Φ is continuously Gâteaux differentiable functional; moreover,

〈Φ′(u), v〉 =

∫
Ω

(|∆u|p(x)−2∆u∆v + |∆u|q(x)−2∆u∆v + θ(x)
|u(x)|s−2uv

|x|2s
)dx

for u, v ∈ X (see [5]). Let f : Ω × R → R be a Carathéodory function

with the growth condition (1.2) and define F (x, t) :=
∫ t

0 f(x, s)ds. Then
the functional Ψ : X → R with Ψ(u) :=

∫
Ω F (x, u(x))dx for every u ∈ X is

continuously Gâteaux differentiable with the following compact derivative
〈Ψ′(u), v〉 :=

∫
Ω f(x, u(x))v(x)dx, for every u, v in X (see [5]). Now, define

Iλ = Φ− λΨ.

Theorem 3.2. Let f : Ω×R −→ R be Carathéodory function satisfy (1.2).
Assume that there exist r > 0 and δ > 0 such that

K
(

(
2δN

R2 − (R2 )2
)p + (

2δN

R2 − (R2 )2
)s
)
m
(
RN − (

R

2
)N
)
< r,

where m := π
N
2

N
2

Γ(N
2

)
is the measure of unit ball of RN and Γ is the Gamma

function. Then for each λ ∈]A,B[, where

A :=
K
(

( 2δN
R2−(R

2
)2

)p + ( 2δN
R2−(R

2
)2

)s
)
m
(
RN − (R2 )N

)
|Ω|
(
a1L(pr)

1
p + a2

γ L
γ
γ(pr)

γ
p
) ,

and

B :=
r

|Ω|
(
a1L(pr)

1
p + a2

γ L
γ(pr)

γ
p
) ,

Problem (1.1) admits at least one non-trivial weak solution.
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Proof. For the given λ > 0, the functional Iλ satisfies the (P.S.)[r] condition.
Let the function wλ ∈ X be defined by

wλ(x) :=


0 x ∈ Ω \B(x0, R),
δ x ∈ B(x0, R2 ),

δ
R2−(R

2
)2

(R2 −
∑N

i=1(xi − x0
i )

2) x ∈ B(x0, R) \B(x0, R2 ),

(3.1)
where x = (x1, · · · , xN ) ∈ Ω. Then,

N∑
i=1

∂2w

∂x2
i

(x) =


0 x ∈

(
Ω \B(x0, R)

)
∪B(x0, R2 ),

− 2δN

R2 − (R2 )2
x ∈ B(x0, R) \B(x0, R2 ).

So, by applying Remark 3.1, one has

1

p+
(

2δN

R2 − (R2 )2
)pm(RN − (

R

2
)N )

< Φ(w)

≤ K
(

(
2δN

R2 − (R2 )2
)p + (

2δN

R2 − (R2 )2
)s
)
m
(
RN − (

R

2
)N
)
,

then, we gain Φ(w) < r. Using Remark 3.1, for each u ∈ Φ−1 ((−∞, 1[), we
have

‖u‖ ≤ [p+Φ(u)]
1
p̌ ≤ (p+r)

1
p̌ . (3.2)

Hence, from (3.2) and (1.2), we deduce

sup
Φ(u)<r

Ψ(u) ≤ |Ω|
(
a1L(pr)

1
p +

a2

γ
Lγ(pr)

γ
p
)
.

Then, from boundedness Φ, one has

Ψ(w)

Φ(w)
>

|Ω|
(
a1L(pr)

1
p + a2

γ L
γ(pr)

γ
p
)

K
(

( 2δN
R2−(R

2
)2

)p + ( 2δN
R2−(R

2
)2

)s
)
m
(
RN − (R2 )N

)
So, by critical points results duo to Bonanno (Theorem 3.4 of [1]), for each
λ ∈]A,B[ the functional Iλ has at least one non-zero critical point which is
the weak solution of Problem (1.1). �
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Abstract. In the this paper, curvature and torsion formulas will be
computed for an implicit curve in (n + 1)-dimension by using tensor
analysis and operations. Then, Goldman’s results for computing the
torsion of an implicit curve have been extended in Rn+1 Euclidean space.
In addition, some useful formulas to calculate the higher order analogues
of the torsion in (n + 1)-dimensions will be derived in this paper, using
tensor operations.

1. Introduction

Curvature formulas of surfaces and curves in Euclidean space have been
developed by many mathematicians so far by using differential geometry.
The differential geometry of curves and surfaces can be found in text-
book such as in Spivak(1975) and Stocker(1969).T. Maekawa and N.H. Pa-
trikalakis (2001) presented Ferenet-Serret formulaes for space curves. Also
they spoke about principal curvatures of explicit surface. Bajaj and Kim
(1991) and B. Linn (1997) presented a formula to compute the curvature for
an implicit plannar curve. R. Osserman considered some relations between
sectional curvatures and the scalar curvature in (n)-dimensional Euclidean
space. Klingenberg (1978) provided a curvature formula for curves which are
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intersections of some equations in R3 , R4 and Rn. K. Nomizu worked on cer-
tain conditions to drive the tensor of curvature for hypersurfaces. Curvature
formulas to calculate mean and Gaussian curvatures for arbitrary surfaces
provided by Turkiyyah(1997) and Belyaev(1998). P. Hartman and L. Niren-
berg considered some no change properties of hypersurfaces of dimension
n immersed in (n + 1)-dimensional Euclidean space. Different formulas to
calculate the curvature of intersection curves in (3)-dimensional Euclidean
space by using implicit function theorem were given by Hartmann(1996).

H. Schlichtkrull (2011) provided some formulas to calculate geodesic and
normal curvatures for an arbitrary curve and relation between components
of Reimann curvature tensor and the second fundamental form of implicit
and explicit surfaces. Osherand Fedkiv(2003) computed some formulas to
calculate the curvature for implicit curves and surfaces by using Level set
method. R. Goldman (2005) found formulas to compute the curvature of
curves in (n + 1)-dimensions which were intersections of (n) hypersurfaces
but for the torsion of curves, only a formula in R3 was driven. Formulas
to calculate first, second and third curvatures of intersection curves in R4

were provided with O. Alessio (2009) by using implicit function theorem. X.
Ye and T. Maekawa. Mohamed. S. Lone and O.Alessio and M. H. Shahid
(2016) used some formulas to compute κ1, κ2, κ3, κ4 and geodesic curvature
in R5 but formula for higher order analogues of κ4 was not provided. The
study of curvature, torsion and higher-order analogous for implicit curves
(for example see [1, 2]).

2. Main Results

It is well known from elementary geometry that a curve in R3 can be
described by x = x(t) , y = y(t) and z = z(t). (t1 < t < t2)

The purpose of this work is to provide the curvature formula for an im-
plicit curve in (n + 1)-dimensions which is generated by the intersection of
n implicit simultaneous equations[4].

A parameterized continuous curve in R3 is a continuous map γ : I → R3

, where I ⊆ R is an open interval (of end points 0 < a < b < ∞ ). The
parametric curve is assumed to be of class 3. The implicit representation for
a space curve can be expressed as intersection curve between two implicit
surfaces F (x, y, z) = 0 and G(x, y, z) = 0.

If the two implicit equations F = 0 and G = 0 can be solved for two of
the variables in terms of the third, for example ẏ and ż in terms of ẋ, we
obtain the curvature formula.This is always possible at least locally when ẋ
is not equal to zero.

Let us consider two implicit simultaneous equations which intersect each
other in an arbitrary curve which lies in 3-dimensional Euclidean space. We
can take first and second differential from two implicit functions to drive ẏ
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, ż , ÿ and z̈ :

{
F (x, y, z) = z − f(x) = 0

G(x, y, z) = z − g(y) = 0
⇒


∂F
∂x

dx
dt + ∂F

∂y
dy
dt + ∂F

∂z
dz
dt = −ẋfx + ż = 0

∂G
∂x

dx
dt + ∂G

∂y
dy
dt + ∂G

∂z
dz
dt = −ẏgy + ż = 0

⇒

{
ẏ = ẋfxgy
ż = ẋfx

⇒

{
ÿ = ẍfxgy + ẋ2(

g2yfxx−f2xgyy
g3y

)

z̈ = ẍfx + ẋ2fxx

The curvature formula for the parametric curve γ is

κ =
‖(ẏz̈ − żÿ)êx + (żẍ− ẋz̈)êy + (ẋÿ − ẏẍ)êz‖

‖ẋêx + ẏêy + żêz‖3
Gradients for implicit functions F and G are given by{−→
∇F =

−→
P1 = Fxêx + Fy êy + Fz êz = −fxêx + êz−→

∇G =
−→
P2 = Gxêx +Gy êy +Gz êz = −gy êy + êz

Now we compute the cross product of vectors
−→
P1 and

−→
P2 :

−→u =
−→
P1 ×

−→
P2 = gy êx + fxêy + fxgy êz

So we can proof this formula for the curvature:

κ =

∥∥∥−→u .(−→∇B).−→u
∥∥∥∥∥−→u ∥∥3 =

∥∥∥(
−→
∇F ×

−→
∇G).(

−→
∇B).(

−→
∇F ×

−→
∇G)

∥∥∥∥∥∥−→∇F ×−→∇G∥∥∥3 (2.1)

Now we introduce two new characters λ1 = −→u .T1.
−→u and λ2 = −→u .T2.

−→u :
−→u .(T2

⊗−→
P1 −T1

⊗−→
P2).
−→u = λ2

−→
P1 − λ1

−→
P2

And hence

κ =

∥∥∥λ2−→P1 − λ1
−→
P2

∥∥∥∥∥−→u ∥∥3 (2.2)

After using above formulas we have∥∥−→u ∥∥ =

√
Ωi′j′k′l′P

i′
1 P

j′

2 P
k′
1 P

l′
2 , (2.3)

Ωi′j′k′l′ =

∣∣∣∣δi′k′ δi′l′
δj′k′ δj′l′

∣∣∣∣
Ωijkl =

∣∣∣∣δik δil
δjk δjl

∣∣∣∣
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And the tensor form of the curvature may be written as

κ =

√
Ωijklλiλk(

−→
Pj .
−→
Pl){

Ωi′j′k′l′P
i′
1 P

j′

2 P
k′
1 P

l′
2

} 3
2

(2.4)

λb = −→u .(
−→
∇
−→
Pb).
−→u = εαβτεησωP

α
1 P

β
2 P

η
1 P

σ
2 P

ω
b,τ

For all i, j, k, l = 1, 2, i′, j′, k′, l′, α, β, τ, η, σ, ω = 1, 2, 3 and b = i, k ∈
{1, 2}.
It is interesting to extend (2.2) for implicit space curves to a formula for
implicit curves in (n + 1)-dimensions that is, to curves is generated by the
intersection of n hyper surfaces which lying in Rn+1(n = 2, 3, · · · ).

3. Conclusions

In this work, Curvature and torsion formulas for parametric planar and
space curves are derived in differential geometry. Due to the application
of curve geometry in the analysis of space-time, geometric quantities in
higher dimensions have been studied. Since driving closed formulas for
the curvature and the torsion and also higher-order analogues of the tor-
sion for implicit surfaces defined by the intersection of implicit equations
F1(x1, · · · , xn+1) = 0 ∩ · · · ∩ Fn(x1, · · · , xn+1) = 0 leads to complicated for-
mulas, studying the geometric quantities for implicit curves and surfaces is
the main focus of many researchers. Closed formulas for the curvature in
(n + 1)-dimensions and for the torsion in 3-dimensions for implicit curves
have been derived by Ron. Goldman in [3]. Finally, by using the MATLAB
program to calculate the geometric values of well-known implicit curves, the
obtained formulas are verified.
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Abstract. In this paper, the strong convergence of the Halpern type
and weak convergence of the sequence generated by the product of re-
solvents of pseudo-convex functions are established in the setting of
Hadamard spaces.

1. Introduction

Let (X, d) be a metric space. A geodesic from x to y is a map γ from
the closed interval [0, d(x, y)] ⊂ R to X such that γ(0) = x, γ(d(x, y)) = y

and d(γ(t), γ(t
′
)) = |t− t′ | for all t, t

′ ∈ [0, d(x, y)]. The image of a geodesic
path is called a geodesic segment, which is denoted by [x, y] whenever it is
unique. A metric space (X, d) is called a geodesic space if every two points
of X are joined by a geodesic path, and X is said to be uniquely geodesic
if every two points of X are joined by exactly one geodesic path. A subset
C of X is said to be convex if C includes every geodesic segments joining
two of its points. Let x, y ∈ Xand t ∈ [0, 1], and we write tx⊕ (1t)y for the
unique point z in the geodesic segment joining from x to y such that

d(x, z) = (1− t)d(x, y) and d(z, y) = td(x, y).

.
A geodesic triangle4(x1, x2, x3) in a geodesic metric space (X, d) consists of

1991 Mathematics Subject Classification. Primary 47B35; Secondary 30H05.
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three vertices (points in X) with unparameterized geodesic segment between
each pair of vertices. For any geodesic triangle, there is comparison (Alexan-
drov) triangle 4̄ ⊂ R2 such that d(xi, xj) = dR2(x̄i, x̄j) for i, j ∈ {1, 2, 3}.
Let 4 be a geodesic triangle in X and 4̄ be a comparison triangle for 4̄,
then 4 is said to satisfy the CAT (0) inequality if for all points x, y ∈ 4 and
x̄, ȳ ∈ 4̄ :

d(x, y) ≤ dR2(x̄, ȳ).

Let x, y and z be points in X and y0 be the midpoint of the segment [y, z];
then, the CAT (0) inequality implies

d2(x, y0) ≤
1

2
d2(x, y) +

1

2
d2(x, z)− 1

4
d(y, z). (1.1)

Inequality (1.1) is known as the CN inequality of Bruhat and Titis [2].
A geodesic space X is said to be a CAT (0) space if all geodesic triangles
satisfy the CAT (0) inequality. Equivalently, X is called a CAT (0) space if
and only if it satisfies the CN inequality. CAT (0) spaces are examples of
uniquely geodesic spaces, and complete CAT (0) spaces are called Hadamard
spaces.
In a unique geodesic metric space X, a set A ⊂ X, is called convex iff for
each x, y ∈ A, [x, y] ⊂ A. A function f : X →]−∞,+∞] is called

(1) proper iff

The domain of f defined by D(f) := {x ∈ X : f(x) < ∞} is
nonempty.

(2) lower semicontinuous (for short, lsc) iff

{x ∈ D(f) : f(x) ≤ r},

is closed for each r ∈ R.

(3) convex iff for all x, y ∈ X and for all λ ∈ [0, 1]

f((1− λ)x⊕ λy) ≤ (1− λ)f(x) + λf(y).

(4) α-weakly convex for some α > 0 iff for all x, y ∈ X and for all
λ ∈ [0, 1]

f((1− λ)x⊕ λy) ≤ (1− λ)f(x) + λf(y) + αλ(1− λ)d2(x, y).

(5) quasi-convex iff for all x, y ∈ X and for all λ ∈ [0, 1]

f((1− λ)x⊕ λy) ≤ (1− λ)f(x) ≤ max{f(x), f(y)}.

(6) pseudo-convex iff f(y) > f(x) implies that there exists β(x, y) > 0
and 0 < δ(x, y) ≤ 1 such that

f(y)− f((1− λ)x⊕ λy) ≥ λβ(x, y), ∀λ ∈ (0, δ(x, y)).
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Definition 1.1. Let {xn} be a bounded sequence in a geodesic metric space
X. then, the asymptotic center A({xn}) of {xn} is defined by

A({xn}) = v̄ ∈ X : lim sup
n→∞

d(v̄, xn) = inf
x∈v

lim sup
n→∞

d(v, xn).

Definition 1.2. A sequence {xn} in a Hadamard space X is said to be
weakly converges to a point v̄ ∈ X if A({xn}) = v̄ for every subsequence
{xnk

} of {xn}. In this case, we write w − limn→∞ xn = v̄(see [1]).

The concept of weak convergence in metric spaces was first introduced
and studied by Lim [6]. Kirk and Panyanak [5] later introduced and studied
this concept in CAT (0) spaces and proved that it is very similar to the weak
convergence in Banach space setting.

2. main results

Definition 2.1. Let H be a Hadamard space and fi : H →] −∞,+∞] be
convex and lsc. For λ > 0, the resolvent of f of order λ at x ∈ H is defined
as follows.

Jfλx := Argminy∈H{f(y) +
1

2λ
d2(x, y)}.

Well-definedness of Jfλ was proved by Jost [3] and Mayer [7]. In [4, The-
orem 3.1] the authors proved that for an α-weakly convex function f , the

resolvent Jfλx exists for all x ∈ H and λ < 1
2α .

Theorem 2.2. Suppose that H is a locally compact Hadamard space and
fi : H →] −∞,+∞] for i = 1, · · · , N are proper, pseudo-convex functions
and lsc. If lim inf λk > 0 and ∩Ni=1Argmin(fi) 6= ∅. Then the sequence
generated by

xk+1 = JfNλk · · · J
f1
λk
xk (2.1)

converges to an element of ∩Ni=1Argmin(fi)

Theorem 2.3. Suppose that H is a Hadamard space and fi : H →] −
∞,+∞] for i = 1, · · · , N are proper, convex and lsc. If lim inf λk > 0 and
∩Ni=1Argmin(fi) 6= ∅ then the sequence (2.1) converges weakly to an element
of ∩Ni=1Argmin(fi)

Halpern regularization of (2.1) gets a strong convergence theorem.

Theorem 2.4. Suppose that H is a Hadamard space and fi : H →]−∞,+∞]
for i = 1, · · · , N are α-weakly convex, quasi-convex and lsc. Let lim inf λk >
0 and ∩Ni=1Argmin(fi) 6= ∅, u ∈ H is arbitrary and αk satisfies the conditions

• 0 ≤ αk ≤ 1
• αk → 0 as k →∞
•
∑∞

k=1 αk = +∞
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If fi for each (1 ≤ i ≤ N) are pseudo-convex functions then the sequence
generated by

xk+1 = αku⊕ (1− αk)JfNλk · · · J
f1
λk
xk

converges strongly to an element ∩Ni=1Argmin(fi)
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Abstract. We present a general norm inequality for matrix functions,
when various types of convexity are considered.

1. Introduction

Assume thatMn(C) is the C∗-algebra of all n× n complex matrices and
Hn(C) is the real subspace of Hermitian matrices. A matrix A ∈ Hn(C)
is said to be positive (semi-definite) and is denoted by A ≥ 0 if all of its
eigenvalues are non-negative. This induces a well-known partial order on
Hn(C), the Löwner order:

A ≤ B ⇐⇒ B −A ≥ 0 (A,B ∈ Hn(C)).

A norm ‖ · ‖| on Mn(C) is called unitarily invariant if ‖|UAV ‖| = ‖|A‖|
holds for every A ∈Mn(C) and all unitary matrices U, V . The most famous
unitarily invariant norms on Mn(C) are the classes Schatten p-norms and
Ky Fan k-norms, see [2].

For a real interval J , we denote byHn(J) the set of all Hermitian matrices,
whose eigenvalues are contained in J . Let f be a real function defined on
an interval J . For any Hermitian matrix A ∈ Hn(J), the Hermitian matrix
f(A) is defined via the spectral decomposition of A = U∗diag(λ1, . . . , λn)U
by f(A) = U∗diag(f(λ1), . . . , f(λn))U , in which λ1, . . . , λn are eigenvalues
of A.

2020 Mathematics Subject Classification. Primary 47A30; Secondary 15A60
Key words and phrases. unitarily invariant norm, positive matrix, convex function.
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Matrix means are known extensions of scalar means to the non-commutative
setting. Let A,B ≥ 0 and t ∈ [0, 1]. The most famous matrix means are
the arithmetic mean A∇tB = (1 − t)A + tB, the geometric mean A]tB =

A1/2
(
A−1/2BA−1/2

)t
A1/2 and the Harmonic meanA!tB =

(
(1− t)A−1 + tB−1

)−1
.

Recall that a real function f : (0,∞)→ (0,∞) is called convex if f(tx+
(1− t)y) ≤ tf(x) + (1− t)f(y) holds for all x, y ≥ 0 and every t ∈ [0, 1]. It
is known that [1] if f is a non-negative convex function on J , then

‖|f(A∇tB)‖| ≤ ‖|f(A)∇tf(B)‖| (1.1)

holds for every unitarily invariant norm ‖| · ‖| and all A,B ∈ Hn(J).
We aim to generalize (1.1) for more type of convexity.

2. Main Result

The convex functions are defined by comparison of arithmetic means of
points in the domain and in the image of a function. When the arithmetic
function is replaced by other various means, some other types of convex
functions are derived. Let α and β be two means. We say that a function
f is α-β-convex when f(α(x, y)) ≤ β(f(x), f(y)) holds for all x, y in the
domain of f . We refer the reader to [3, 5] for more information about
various convexities and examples.

With respect to this notion, we present the next result, which provides a
generalization of (1.1).

Theorem 2.1. Let f be a positive function defined on (0,∞). If f is a
α-β-convex function, then

‖|f(α(A,B))‖| ≤ ‖|β(f(A), f(B))‖| (2.1)

holds for all positive matrices A,B. If α = ]t, then∥∥∥∥∣∣∣∣f (exp

(
A+B

2

))∥∥∥∥∣∣∣∣ ≤ ‖|β(f(expA), f(expB))‖| (2.2)

holds.

Theorem 2.1 enables us to examine many kinds of function rather that
the classical convex functions. Following, we give some examples.

It is known that the function x 7→ exp(x) and x 7→ xr (r < 0) are
∇-]-convex, see [3, 5]. Theorem 2.1 then gives:

Corollary 2.2. If r < 0, then

‖|(A+B)r‖| ≤ 2r ‖|Ar]Br‖| (2.3)

and

‖|exp(1/2(A+B))‖| ≤ ‖| exp(A)] exp(B)‖| (2.4)

holds for all positive matrices A,B.
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The function f(x) = xr is !-!-convex on (0,∞) for every r ∈ [0, 1]. Apply-
ing Theorem 2.1 we have the next result.

Corollary 2.3. If r ∈ [0, 1], then∣∣∣∣∣∣∣∣∣(A−1 +B−1
)−r

∣∣∣∣∣∣∣∣∣ ≤ 21−r
∣∣∣∣∣∣∣∣∣(A−r +B−r

)−1
∣∣∣∣∣∣∣∣∣ (2.5)

holds for all positive matrices A,B.

If r ≥ 0 of r ≤ −1, then x 7→ exp(xr) is a !-]-convex function on (0,∞).
Consequently, Theorem 2.1 implies that:

Corollary 2.4. f r ≥ 0 of r ≤ −1, then∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣exp

(
A−1 +B−1

2

)−r
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ |||exp(Ar)] exp(Br)||| (2.6)

holds for all positive matrices A,B.
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Abstract. In this talk, we investigate optimality conditions for non-
smooth nonconvex optimization problems by means of generalized Fritz
John (FJ) and Karush-Kuhn-Tucker (KKT) conditions. We obtain
alternative-type optimality conditions, which could be helpful in ana-
lyzing duality results and sketching numerical algorithms.

1. Introduction

FJ and KKT conditions play a central role in optimization (both the-
oretically and numerically). Many researchers have examined these con-
ditions under different assumptions. Consider the following optimization
problem with inequality constraints and a nonempty geometric constraint
set X ⊆ Rn:

min f(x)
s.t. gi(x) ≤ 0, i = 1, 2, · · · ,m,

x ∈ X,
(1.1)
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in which f, gi : Rn −→ R, i = 1, 2, . . . ,m, are real-valued functions. We
show the feasible solutions set of (1.1) by

F := {x ∈ X : gi(x) ≤ 0, i = 1, 2, · · · ,m},
and the set of indices of the active constraints at x̄ ∈ F by

I(x̄) := {i ∈ {1, 2, · · · m} : gi(x̄) = 0}.
For a set K ⊆ Rn, the nonnegative polar cone of K, the tangent cone of

K at y ∈ clK, and the normal cone of K at y ∈ clK, denoted by K◦, TK(y),
and NK(y), respectively, and defined as

K◦ := {z ∈ Rn : zT y ≥ 0, ∀y ∈ K},

TK(y) :=
{
d ∈ Rn : ∃

(
tν > 0, {yν} ⊆ K

)
s.t. yν −→ y, tν(yν − y)→ d

}
,

NK(y) = −[TK(y)]◦.

If the functions appeared in problem (1.1) are differentiable, x̄ ∈ F is
said to be an FJ point of (1.1) if there are non-negative coefficients λ0, λi ≥
0, i ∈ I(x̄), not all zero, such that

λ0∇f(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) ∈ [TX(x̄)]◦. (1.2)

If x̄ ∈ intX, then TX(x̄) = Rn and [TX(x̄)]◦ = {0n}. In this case, the above-
mentioned FJ condition is reduced to the well-known classic form. Also, if
λ0 6= 0, then we reach the KKT condition.

In the following, we present Flores-Bazan and Mastroeni’s definition [1] of
the FJ and KKT points, which takes into account any arbitrary set B ⊆ Rn
instead of the tangent cone.

Definition 1.1. [1] Let B ⊆ Rn be a given nonempty set. Assuming differ-
entiability of f and gi’s, a vector x̄ ∈ F is called a

(i) B-FJ point of (1.1) if there exist scalars λ0, λi ≥ 0, i ∈ I(x̄), not all
zero, satisfying

λ0∇f(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) ∈ B◦.

(ii) B-KKT point of (1.1) if there exist scalars λi ≥ 0, i ∈ I(x̄), satisfying

∇f(x̄) +
∑
i∈I(x̄)

λi∇gi(x̄) ∈ B◦.

2. Alternative-type FJ and KKT optimality conditions

Let Z ⊆ Rn. The interior, the closure, the relative interior, and the
boundary of Z are denoted by int Z, cl Z, ri Z, and bdZ, respectively. The
convex hull and the cone generated by Z are denoted by conv Z, and coneZ,

respectively. Recall that coneZ :=
⋃
t≥0

tZ.
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Definition 2.1. [3] Let f : Rn −→ R be locally Lipschitz at x̄ ∈ Rn. The
generalized directional derivative of f at x̄ ∈ Rn in direction d ∈ Rn is
defined by

f◦(x̄; d) := lim sup
y−→x̄

t↓0

f(y + td)− f(y)

t
.

Moreover, the Clarke subdifferential (generalized gradient) of f at x̄ ∈ Rn
is the set

∂f(x̄) := {ξ ∈ Rn : f◦(x̄; d) ≥ ξTd, ∀d ∈ Rn}.

Theorem 2.2. [3, Theorem 5.1.6] Suppose that f : Rn −→ R is locally
Lipschitz at x̄ ∈ Rn and attains its local minimum over the set C ⊆ Rn at
x̄. Then

0 ∈ ∂f(x̄) +NC(x̄).

Let B ⊆ Rn be a given nonempty set. Consider the following sublinear
problem corresponding to Problem (1.1) and given B:

µ := inf f◦(x̄; d)
s.t. d ∈ Go(x̄),

(2.1)

where Go(x̄) := {d ∈ cl convB : g◦i (x̄; d) < 0, ∀i ∈ I(x̄)}. Set µ := +∞
whenever Go(x̄) = ∅.

Definition 2.3. [2] Suppose that f, gi, i ∈ I(x̄), are locally Lipschitz at
x̄ ∈ F . The vector x̄ is called a

(i) FJ point of (1.1) if there exist λ0, λi ≥ 0, i ∈ I(x̄), not all zero,
ξ̄ ∈ ∂f(x̄), and ζ̄i ∈ ∂gi(x̄), i ∈ I(x̄), such that

λ0ξ̄ +
∑
i∈I(x̄)

λiζ̄i ∈ B◦. (2.2)

(ii) KKT point of (1.1) if there exist ξ̄ ∈ ∂f(x̄), ζ̄i ∈ ∂gi(x̄), λi ≥ 0;
i ∈ I(x̄), such that

ξ̄ +
∑
i∈I(x̄)

λiζ̄i ∈ B◦. (2.3)

The next results have been reported in our recent work, [2]. Based on
the following Theorem, we can derive an alternative-type FJ optimality
condition.

Theorem 2.4. Suppose that x̄ ∈ X and f, gi, i ∈ I(x̄), are locally Lipschitz
at x̄. Then one and only one of the following two statements is true.

(i) There exists d ∈ cl convB such that

f◦(x̄; d) < 0,
g◦i (x̄; d) < 0, i ∈ I(x̄).

(2.4)

(ii) x̄ is a FJ point of (1.1).
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Furthermore, if B is a cone, then

(i)⇐⇒ µ = −∞.

In consequence of Theorem 2.4, Corollary 2.5 provides an FJ necessary
optimality condition.

Corollary 2.5. Assume that x̄ ∈ F and f , gi, t = 1, 2, · · · ,m, are locally
Lipschitz at x̄. Furthermore, suppose that cl convB ⊆ TX(x̄). Then the FJ
condition (2.2) is satisfied if x is a local optimal solution to (1.1).

Corollary 2.6 provides a KKT necessary optimality conditions under some
assumptions. The first assumption is related to the set B, and second one
is corresponding to the feasibility of the sublinear Problem (2.1).

Corollary 2.6. Let x̄ ∈ F be given. Assume that f , gi, t = 1, 2, · · · ,m, are
locally Lipschitz at x̄. Furthermore, assume that cl convB ⊆ TX(x̄). If x̄ is
a local optimal solution to (1.1), then under either (a) or (b) x̄ is a KKT
point of (1.1).

(a) conv{ξi : ξi ∈ ∂gi(x̄), i ∈ I(x̄)} ∩B◦ = ∅;
(b) There exists some d ∈ cl convB such that g◦i (x̄; d) < 0, for any

i ∈ I(x̄).

Theorem 2.7 provides a necessary and sufficient condition equivalent to
KKT conditions. Given Ω ⊆ Rn, define

F (Ω) :=

{(
f◦(x̄; d)
g◦I(x̄)(x̄; d)

)
: d ∈ Ω

}
.

in which, g◦I(x̄)(x̄; d) is a |I(x̄)|-vector whose components are g◦i (x̄; d), i ∈
I(x̄).

Theorem 2.7. Let x̄ ∈ F and B ⊆ Rn be a nonempty cone. Assume that
f, gi, i = 1, 2, · · · ,m, are locally Lipschitz at x̄. Then x̄ is a KKT point for
(1.1) if and only if

cl
[
F (cl convB) +

(
R+ × RI(x̄)

+

)]⋂
−(R++ × {0}

)
= ∅.

More results will be presented in the related talk.
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Abstract. In this paper, we introduced the notion Hardy-Rogers MT -
cyclic contraction. Using this concept, we investigate the existence of
best proximity point for such mappings in metric spaces. The uniqueness
of this point will be obtain by imposing an additional condition, so called
”property UC”. At the end, using the definition of MT -cyclic orbital
contraction, we shall prove and discuss the existence and uniqueness of
fixed point of such mappings in the setting of metric space and b-metric
space.

1. Introduction

In the last decades, both fixed point theory and best proximity point
theory have been appreciated by several authors, see e.g. [1-6]. In this
paper, we examine existence and uniqueness of best proximity points and
fixed points for generalizedMT - cyclic contractions andMT -cyclic orbital
contractions with respect to ϕ in the context of metric space. Let A and B
be nonempty subsets of metric space (X, d). A map T : A ∪ B → A ∪ B is
called a cyclic if T (A) ⊂ B and T (B) ⊂ A, see e.g. [6] and [12]. For any
nonempty subsets A and B of X, we let

dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

2020 Mathematics Subject Classification. 47T10; 54H25
Key words and phrases. Best proximity point, property UC, MT -cyclic orbital

contraction.
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A point x ∈ A∪B is called to be a best proximity point for T if d(x, Tx) =
dist(A,B). Note that if A = B then the best proximity point of T turns
into fixed point of T .

The concept of property UC was introduced by Suzuki et al. [14] as
follows:

A pair (A,B) is said to satisfy the property UC if the following holds:

(UC) If {(xn)∞n=1} and {(x′n)∞n=1} are sequences in A and {yn}∞n=1 is a se-
quence in B such that lim

n→∞
d(xn, yn) = d(A,B) and lim

n→∞
d(x′n, yn) =

d(A,B) then lim
n→∞

d(xn, x
′
n) = 0.

Definition 1.1. [8] A function ϕ : [0,∞) → [0, 1) is said to be an MT -
function if it satisfies Mizoguchi-Takahashi’s condition ( i.e. lim sup

s→t+
ϕ(s) <

1 for all t ∈ [0,∞)).

Remark 1.2. [8] It is obvious that if ϕ : [0,∞) → [0, 1) is a nondecreasing
function or a nonincreasing function, then ϕ is anMT -function. So the set
of MT -functions is a rich class. But it is worth to mention that there exist
functions which are not MT -functions.

Example 1.3. [8] Let ϕ : [0,∞)→ [0, 1) be defined by

ϕ(t) :=

{
sin t
t , if t ∈ (0, π2 ]
0 , otherwise.

Since lim sup
s→0+

ϕ(s) = 1, ϕ is not an MT -function.

The aim of this paper is generalization of Theorem 1 in [10] by applying
the notion of MT -cyclic contraction with respect to a MT -function ϕ.For

convenience of the reader, we recall some of MT -cyclic contractions in the
framework of complete metric spaces which are defined in some papers:
For mapping T : A∪B → A∪B with T (A) ⊂ B and T (B) ⊂ A; T is called
[6] [MT -cyclic contraction] if

d(Tx, Ty) ≤ ϕ(d(x, y))d(x, y) + (1− ϕ(d(x, y)))dist(A,B);

[13][MT -cyclic Kannan contraction] if

d(Tx, Ty) ≤ 1

2
ϕ(d(x, y))

(
d(x, Tx) + d(y, Ty)

)
+ (1− ϕ(d(x, y)))dist(A,B);

[4][MT -cyclic Reich contraction] if

d(Tx, Ty) ≤ 1

3
ϕ(d(x, y))

(
d(x, y)+d(x, Tx)+d(y, Ty)

)
+(1−ϕ(d(x, y)))dist(A,B);

[2][generalizedMT -cyclic contraction] if

d(Tx, Ty) ≤ ϕ(d(x, y)) max{d(x, y), d(x, Tx), d(y, Ty)}+(1−ϕ(d(x, y)))dist(A,B).

It is showed there exists an example give a map T which is a MT -cyclic
contraction but not a cyclic contraction; see Example A in [6].
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2. Best Proximity point for Hardy-Rogers MT -cyclic
contraction

In this section, we present our main results. We, first, introduce the
generalized MT -cyclic contraction with respect to auxiliary MT -function
ϕ.

Definition 2.1. Let A and B be nonempty subsets of a metric space (X, d).
If a map T : A ∪B → A ∪B satisfies

(HRMT1) T (A) ⊂ B and T (B) ⊂ A;
(HRMT2) there exists a MT -function ϕ : [0,∞)→ [0, 1) such that

d(Tx, Ty) ≤ϕ(d(x, y))

5

(
d(x, y) + d(x, Tx) + d(Ty, y) + d(x, Ty) + d(Tx, y)

)
+
(
1− ϕ(d(x, y))

)
dist(A,B),

for all x ∈ A and y ∈ B. Then T is called a Hardy-Rogers MT -cyclic
contraction with respect to ϕ on A ∪B.

In what follows that we establish the following theorem for best proximity
point which is one of the main results in this paper.

Theorem 2.2. Let A and B be nonempty subsets of a metric space (X, d)
and (A,B) satisfies the property UC. Let T : A ∪ B → A ∪ B be a cyclic
map and let ϕ be a MT -function. Suppose that A is complete and T is a
Hardy-Rogers MT -cyclic contraction with respect to ϕ. Then the following
hold:

(i) T has a best proximity point z in A.
(ii) z is a unique fixed point of T 2 in A.

(iii) {T 2nx} converges to z for every x ∈ A.
(iv) T has at least one best proximity point in B.
(v) If (B,A) satisfies the property UC, then Tz is unique best proximity

point in B and {T 2ny} converges to Tz for every y ∈ B.

3. Best Proximity point for MT -cyclic orbital contraction in
b-metric spaces

In this section we obtain fixed point theorem for MT -cyclic orbital con-
traction in b-metric spaces.

Bakhtin [3] and Czerwik [5] introduced b-metric spaces (a generalization
of metric spaces) and proved the contraction principle in this framework.

Definition 3.1. [3] and [5] Let X be a nonempty set and let s ≥ 1 be a
given real number. A function d : X ×X → [0,∞) is said to be a b-metric
if and only if for all x, y, z ∈ X the following conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ s[d(x, y) + d(y, z)].

A triplet (X, d, s), is called a b-metric space with coefficient s.
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We first introduce the concept of MT -cyclic orbital contractions.

Definition 3.2. Let A and B be nonempty subsets of a metric space (X, d).
If a map T : A ∪B → A ∪B satisfies

(MTO1) T (A) ⊂ B and T (B) ⊂ A;
(MTO2) for some x ∈ A there exists a MT -function ϕx : [0,∞)→ [0, 1) such

that

d(T 2nx, Ty) ≤ ϕx(d(T 2n−1x, y))d(T 2n−1x, y) for any y ∈ A and n ∈ N.

Then T is called aMT -cyclic orbital contraction with respect to ϕx on A∪B.

The following example give a map T which is a MT -cyclic orbital contrac-
tion but not a cyclic orbital contraction.

We obtain a unique fixed point for such a map as follows.

Theorem 3.3. Let A and B be nonempty closed subsets of a complete b-
metric space (X, d, s) and T : A ∪ B → A ∪ B be a MT -cyclic orbital
contraction with respect to ϕ. Then A∩B is nonempty and T has a unique
fixed point.
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Abstract. The aim of the present paper is to introduce semi-doubly
stochastic and (weak)majorization on a non commutative measure space
(M, τ), where M is a semi finite von Neumann algebra with a normal
faithful trace τ .

1. Introduction

Since Hardy, Litttewood, and Pólya in 1929 introduced the concept of
majorization, many mathematicians have discussed the weak majorization
and manjorization in various circumstances with several applications. Let
x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in Rn. x is said to be
majorized and denoted by y x ≺ y, if

∑k
i=1 x

↓
i ≤

∑k
i=1 y

↓
i , for all 1 ≤ k ≤

n and
∑n

i=1 x
↓
i =

∑n
i=1 y

↓
i ,where x↓ = (x↓1, . . . , x

↓
n) and y↓ = (y↓1, . . . , y

↓
n)

are obtained from x and y by rearranging their components in decreasing
order. Moreover, the study of (weak)majorization has been successful in the
theory of matrices via comparison of eigenvalues by Ando in 1982. On the
other hand, the doubly stochastic matrices and maps have been studied in
connection with majorization theory by Mirsky, Chong, Alberti and Uhlman.
Definition 1.1. An n × n matrix D = (aij) is called doubly stochastic if
D1 = 1 and D∗1 = 1, where 1 = (1, . . . , 1) ∈ Rn and D∗ is the adjoint
matrix of D.

1991 Mathematics Subject Classification. Primary 47B60; Secondary 60E15.
Key words and phrases. majorization, singular values, stochastic maps.
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Theorem 1.2. [5] For X,Y ∈ Rn, the following statements are equivalent:
(1) X ≺ Y .
(2) X is in the convex hull of all vectors obtained by permuting the

coordinates of Y .
(3) X = DY for some doubly stochastic matrix D.

Definition 1.3. Let A and B are two m× n matrices. A is majorized by B
in symbols A ≺ B if there is a doubly stochastic m×m matrix D such that
A = DB.

The theory of (weak)majorization has been developed for real- valued
measurable functions on abstract measure space based on the theory rear-
rangements by Chong and Sakai. In the case of a σ-finite measure space
(X,A, µ), the notion of decreasing rearrangement can be defined for non-
negative integrable functions. For a finite measure space (X,A, µ), Ryff
considered the class of all linear operators T : L1(X,µ) → L1(X,µ) for
which Tf ≺ f , for all f ∈ L1(X,µ). This class is denoted by DS(L1(X,µ))
and each element of this class is called doubly stochastic operators. For σ-
finite measure space (X,A, µ), in [1] the semi-doubly stochastic operator is
introduced and the set of all these operators is denoted by SDS

(
L1(X,µ)

)
.

For a non-negative f ∈ L1(X,µ), let Sf := {Sf ;S ∈ SDS(L1)} and
Ωf := {h ∈ L1;h ≥ 0 and h ≺ f}. It is easily seen that both sets Sf

and Ωf are convex subsets of L1. It has been proved that Sf is dense in Ωf

[1].

2. Main results

In this section we study the relation between majorization and doubly
stochastic maps on a semi finite von Neumann algebras. Throughout this
section M is a semi finite von Neumann algebra on a Hilbert space H and τ
is a faithful normal semi finite trace on M. We fix a couple (M, τ) as a non-
commutative measure space. For positive operator x affiliated with We fix
a couple (M, τ), eI(x) will denote the spectral projection of x correspond-
ing to an interval I in [0,∞). A closed and densely defined linear operator
x : D(x) → H is said to be τ -measurable if x affiliated with M, and there
exists λ ≥ 0 such that τ(e|x|(λ,∞)) < ∞. The collection of all τ -measurable
operators is denoted by L0(M). The set L0(M) is a complex ∗-algebra with
unit element 1. The von Neumann algebra M is a ∗-subalgebra of L0(M).
For each L of L0(M), the set of all positive elements in L is denoted by L+.
The closure of L1(M) in L0(M) is denoted by G̃.

Let x ∈ L0(M) and t > 0. The t-th singular value of x (or generalized
s-numbers) is the number denoted by µt(x) and for each t ∈ R+

0 is defined
by

µt(x) = inf{∥ xe ∥: e ∈ P(M), τ(1− e) ≤ t}.
169



STOCHASTIC OPERATORS

For 0 < p < ∞, Lp(M, τ) is defined as the set of all τ -measurable operators
x such that

∥ x ∥p= τ(|x|p)
1
p < ∞. (2.1)

Moreover, we put L∞(M, τ) = M and denote by ∥ · ∥∞ the usual operator
norm. For simplicity from now on Lp(M, τ) will denoted by Lp(M). Let
1 ≤ p < ∞, an operator x ∈ M is said to be locally integrable if there exists
δ > 0 such that ∫ δ

0
µt(x)

p dt < ∞.

The set containing all these operators is denoted by Lp
loc(M). Note that in

particular, all bounded operators a ∈ M are of this class. Moreover,∫ δ

0
µt(x)

p dt ≥ µδ(x)
p−1

∫ δ

0
µt(x) dt

implies that Lp
loc(M) ⊂ L1

loc(M) for each p ≥ 1 [3].

Definition 2.1. Let a, b be positive τ -measureable operators. We say that a
is submajorized (weakly majorized) by b in symbol a ≺w b, if

∫ s
0 µt(a)dt ≤∫ s

0 µt(b)dt for all s > 0. Moreover a is said to be majorized by b and is
indicated by a ≺ b, if a ≺w b and

∫∞
0 µt(a)dt =

∫∞
0 µt(b)dt.

Let φ be a linear map from M to itself. φ is positive if φ(a) is positive
for every a ∈ M+, φ is unital if φ(1) = 1 and φ is trace preserving if
τ(φ(a)) = τ(a).

Definition 2.2. [2] A positive linear map φ : M −→ M is called doubly
stochastic if it is unital and trace preserving. φ is called doubly substochastic
if φ(1) ≤ 1 and τ(φ(a)) ≤ τ(a) for all a ∈ M+. The set of all doubly
stochastic ( resp. doubly substochastic) linear maps on M is denoted by
DS(M)(resp. DSS(M)).

In the following two propositions, which are proved in [2], the relations
between (weak)majorization and doubly (sub)stochastic maps are investi-
gated.

Proposition 2.3. Let φ : M −→ M be a positive linear map. Then
(1) φ(a) ≺w a for all a ∈ M+ if and only if φ ∈ DSS(M) .
(2) φ(a) ≺ a for all a ∈ M+ if and only if φ ∈ DSS(M) and φ is trace

preserving (hence φ ∈ DS(M) when τ(1) < ∞).

Proposition 2.4. Let a, b ∈ L0(M).
(1) If τ(1) < ∞ and b ∈ L1(M), then a ≺ b if and only if there exists

φ ∈ DS(M) such that a = φ(b).
(2) If b ∈ Lp(M) with 1 ≤ p < ∞, or if b ∈ M and a ∈ G̃, then a ≺w b

if and only if φ ∈ DSS(M) such that a = φ(b).
Moreover, a normal and completly positive φ can be chosen in each (1) and
(2) if b ∈ Lp(M), 1 ≤ p < ∞, or a ∈ G = G̃ ∩M.
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Theorem 2.1. [4] Let x, y be operators in L0(M). Then for p, q, r ∈ R+

that 1
p + 1

q = 1
r ,

1

r
| xy∗ |r≺w

1

p
| x |p +1

q
| y |q . (2.2)

Moreover, if x, y ∈ L1(M) are bounded operators or xy ∈ L2
loc(M), then

there exists a φ ∈ DS(M) such that a = φ(b).
1

r
| xy∗ |r≺ 1

p
| x |p +1

q
| y |q , (2.3)

if and only if | x |p=| y |q.

Corollary 2.5. Let x, y ∈ L1(M) are bounded operators. Then for p, q, r ∈
R+ that 1

p + 1
q = 1

r , there exists φ ∈ DSS(M) such that

| xy∗ |r= φ

(
r

p
| x |p +r

q
| y |q

)
.

Moreover, if τ(1) < ∞, then φ ∈ DS(M)

3. Conclusion

For a ∈ L0(M)+, let Sa := {φ(x); φ ∈ DSS(M)}, Da := {φ(x); φ ∈
DS(M)} and Ωa := {b ∈ L0(M)+; b ≺ a}. Sets Sa, Da and Ωa are convex.
Proposition 2.4 (part (1)) implies that If τ(1) < ∞ and a ∈ L1(M), then
Sa = Da. When τ(1) = ∞, it is not clear for us whether or not Sa = Ωa.
If we consider (ΩS)a := {b ∈ L0(M)+; b ≺w a}, then Proposition 2.4 (part
(2)) implies that Sa = (ΩS)a when a ∈ L1(M).
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Abstract. Partial metric spaces were introduced by Matthews in 1994
as a part of the study of denotational semantics of data flow networks.
In 2014 Asadi and et al. [1] extend the Partial metric spaces to M -metric
spaces. In this work, we introduce the class of F (ψ,ϕ)-contractions and
investigate the existence and uniqueness of fixed points for the new class
C in the setting of M -metric spaces. The theorems that we prove gen-
eralize many previously obtained results. We also give some examples
showing that our theorems are indeed proper extensions.

1. Introduction

The notion of metric space was introduced by Fréchet [2] in 1906. Later,
many authors attempted to generalize the notion of metric space such as
pseudo metric space, quasi metric space, semi metric spaces and partial
metric spaces. In this paper, we consider another generalization of a metric
space, so called M -metric space. This notion was introduced by Asadi et al.
(see e.g. [1]) to solve some difficulties in domain theory of computer science.
Geraghty in 1973 introduced an interesting class of auxiliary function to
refine the Banach contraction mapping principle. Let F denote all functions
β : [0,∞)→ [0, 1) which satisfies the condition:

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0.
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By using the function β ∈ F Geraghty [3] proved the following remarkable
theorem.

Theorem 1.1. (Geraghty [3]) Let (X, d) be a complete metric space and
T : X → X be an operator. Suppose that there exists β : [0,∞) → [0, 1)
satisfying the condition,

β(tn)→ 1 implies tn → 0

If T satisfies the following inequality

d(Tx, Ty) ≤ β(d(x, y))d(x, y), for any x, y ∈ X, (1.1)

then T has a unique fixed point.

In 2014 Asadi et al. [1] introduced the M -metric space which extends
partial metric space [4], by some of certain fixed point theorems obtained
therein, and they have given a theorem that its proof is still open as follows.

Theorem 1.2. Let (X,m) be a complete M -metric space and T : X → X
be mapping satisfying:

∃k ∈ [0,
1

2
) such that m(Tx, Ty) ≤ k(m(x, Ty) +m(y, Tx)) ∀x, y ∈ X.

Admissible mappings have been defined recently by Samet et al [?] and
employed quite often in order to generalize the results on various contrac-
tions. We state next the definitions of α-admissible mapping and triangular
α-admissible mappings.

Definition 1.3. Let α : X × X → [0.∞). A self-mapping T : X → X is
called α-admissible if the condition

α(x, y) ≥ 1⇒ α(Tx, Ty) ≥ 1, (1.2)

is satisfied for all x, y ∈ X.
Definition 1.4. A mapping T : X → X is called triangular α-admissible if
it is α-admissible and satisfies

α(x, y) ≥ 1, α(y, z) ≥ 1⇒ α(x, z) ≥ 1. (1.3)

where x, y, z ∈ X and α : X ×X → [0.∞) is a given function.

In what follows we recall the notion of (triangular) α-orbital admissible,
introduced by Popescu [6], that is inspired from [5].

Definition 1.5. [6] For a fixed mapping α : X ×X → [0,∞), we say that
a self-mapping T : X → X is an α-orbital admissible if

(O1) α(u, Tu) ≥ 1⇒ α(Tu, T 2u) ≥ 1.

Let A be the collection of all α-orbital admissible T : X → X.
In addition, T is called triangular α-orbital admissible if T is α-orbital

admissible and

(O2) α(u, v) ≥ 1 and α(v, Tv) ≥ 1⇒ α(u, Tv) ≥ 1

Let O be the collection of all triangular α-orbital admissible T : M →M.
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Definition 1.6. ([1]) Let X be a non empty set. A function m : X ×X →
R+ is called M -metric if the following conditions are satisfied:

(m1) m(x, x) = m(y, y) = m(x, y) ⇐⇒ x = y,
(m2) mxy ≤ m(x, y),
(m3) m(x, y) = m(y, x),
(m4) (m(x, y)−mxy) ≤ (m(x, z)−mxz) + (m(z, y)−mzy) .

Where
mxy := min{m(x, x),m(y, y)} = m(x, x) ∨m(y, y),

Then the pair (X,m) is called a M -metric space.

Definition 1.7. A function ψ : [0,∞)→ [0,∞) is called an altering distance
function if the following properties are satisfied:

(i) ψ is non-decreasing and continuous,
(ii) ψ (t) = 0 if and only if t = 0.

Remark 1.8. We let Ψ denote the class of the altering distance functions.

Definition 1.9. An ultra altering distance function is a continuous, non-
decreasing mapping ϕ : [0,∞) → [0,∞) such that ϕ(t) > 0 for t > 0 and
ϕ(0) ≥ 0.

Remark 1.10. We let Φ denote the class of the ultra altering distance func-
tions.

Definition 1.11. A mapping F : [0,∞)2 → R is called C-class function if
it is continuous and satisfies following axioms:

(1) F (s, t) ≤ s;
(2) F (s, t) = s implies that either s = 0 or t = 0; for all s, t ∈ [0,∞).

Note for some F we have that F (0, 0) = 0.
We denote C-class functions as C.

2. main results

Definition 2.1. Let (X,m) be an M -metric space, and let T : X → X be a
given mapping. We say that T is F (α,ψ)-contractive mapping if there exist
ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such that

ψ(m(Tx, Ty)) ≤ F (ψ(m(x, y)), ϕ(m(x, y))), (2.1)

Definition 2.2. Let (X,m) be an M -metric space, and let T : X → X
be an α-admissible mapping. We say that T is an α-admissible F (α,ψ)-
contractive mapping if there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such that

α(x, y)ψ(m(Tx, Ty)) ≤ F (ψ(m(x, y)), ϕ(m(x, y))), (2.2)

Definition 2.3. Let (X,m) be an M -metric space, and let T : X → X
be an α-admissible mapping. We say that T is a generalized α-admissible
F (α,ψ)-contractive mapping if there exist ψ ∈ Ψ, ϕ ∈ Φ and F ∈ C such
that

α(x, y)ψ(m(Tx, Ty)) ≤ F (ψ(M(x, y)), ϕ(M(x, y))), (2.3)
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Where M(x, y) = max{m(x, y),m(x, Tx),m(y, Ty)}

Theorem 2.4. (X,m) be a complete M -metric space, and let T : X → X
be a generalized α-admissible F (α,ψ)-contractive mapping. and satisfies the
following conditions:
(i) T ∈ O;
(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iii) T is continuous.
Then T has a fixed point v ∈ X and {Tnx0} converges to v.

For the uniqueness of a fixed point of a generalized α-admissible F (α,ψ)-
contractive mapping, we shall suggest the following hypothesis.
(∗) For all x, y ∈ Fix(T ), we have α(x, y) ≥ 1.
Here, Fix(T ) denotes the set of fixed points of T .

Theorem 2.5. Adding condition (∗) to the hypotheses of Theorem 2.4, we
obtain that v is the unique fixed point of T .
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Abstract. Using control functions, we improve and extend some re-
sults of coupled fixed point theorems for nonlinear contractions in par-

tially ordered metric spaces by Lakshmikantam and Ćirić [2] to ordered
M -metric spaces.

1. Introduction

Partial metric spaces, which are generalizations of metric spaces, intro-
duced by S. G. Mathews [3] as a part of the study of denotational semantics
of data flow networks and he gave a Banach fixed point result for these
spaces. After that, In 2014 Asadi et al. [1] introduced the M -metric space
which extends p-metric space, by some of certain fixed point theorems ob-
tained therein, many authors proved fixed point theorems on M -metric
spaces, see [4]. Lakshmikantam and Ćirić in [2], gave some interesting fixed
point results on ordered metric spaces, but there exist two error in that pa-
per. In this paper, using a class of control functions, we extend main results
of [2] to complete M -metric spaces. We mention two errors of [2] as well.

Definition 1.1. ([1]) Let X be a non empty set. A function m : X ×X →
R+ is called a m-metric if the following conditions are satisfied:

(m1) m(x, x) = m(y, y) = m(x, y) ⇐⇒ x = y,
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(m2) mxy ≤ m(x, y),
(m3) m(x, y) = m(y, x),
(m4) (m(x, y)−mxy) ≤ (m(x, z)−mxz) + (m(z, y)−mzy) .

Where

mxy := min{m(x, x),m(y, y)}.
Then the pair (X,m) is called an M -metric space.

The following notation is useful in the sequel.

Mxy := max{m(x, x),m(y, y)}.

We note that every p-metric is a m-metric. In the following example we
present an example of a m-metric which is not p-metric.

Example 1.2. ([1]) Let X = {1, 2, 3}. Define

m(1, 2) = m(2, 1) = m(1, 1) = 8

m(1, 3) = m(3, 1) = m(3, 2) = m(2, 3) = 7 m(2, 2) = 9 m(3, 3) = 5

so m is m-metric but m is not p-metric. Since m(2, 2) 6≤ m(1, 2) means m
is not p-metric. If D(x, y) = m(x, y)−mx,y then m(1, 2) = m1,2 = 8 but it
means D(1, 2) = 0 while 1 6= 2 which means D is not metric.

Definition 1.3. Let (X,≤) be a partially ordered set and f : X ×X → X
and g : X → X. We say f has the mixed g-monotone property if for any
x, y, x1, x2, y1, y2 ∈ X

g(x1) ≤ g(x2) implies f(x1, y) ≤ f(x2, y) (1.1)

and

g(y1) ≤ g(y2) implies f(x, y1) ≤ f(x, y2) (1.2)

Definition 1.4. An element (x, y) ∈ X ×X is called a coupled coincidence
point of mappings f : X ×X → X and g : X → X if

f(x, y) = g(x), f(y, x) = g(y).

Definition 1.5. Let f : X ×X → X and g : X → X. We say f and g are
commutative if for all x, y ∈ X

g(f(x, y)) = f(g(x), g(y)).

For simplicity, we denote g(x) by gx.

2. main results

Definition 2.1. Let ψ : R+ → R+ be such that ψ(t) → 0 if and only if
t → 0, ψ−1 is nondecreasing and one to one and ψ(a + b) ≤ ψ(a) + ψ(b)
(sub-additivity) for a, b ∈ R+. We denote the set of these functions by Ψ.
For example, ψ(t) = αt and ψ(t) = eαt for α ≥ 0 belong to Ψ.
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Theorem 2.2. Let (X,m,≤) be a partially ordered complete M -metric
space. Assume that there is a function ϕ : [0,+∞)→ [0,+∞) with ϕ(0) = 0,
ϕ(t) < t and lim

r→t+
ϕ(r) < t for each t > 0 and also suppose f : X ×X → X

and g : X → X are such that f has the mixed g-monotone property and

ψ(m(f(x, y), f(u, v))) ≤ ϕ(
ψ(m(gx, gu)) + ψ(m(gy, gv))

2
) (2.1)

for all x, y, u, v ∈ X for which gx ≤ gu and gy ≥ gv and ψ ∈ Ψ. Suppose
f(X × X) ⊆ g(X), g is continuous and commute with f and also suppose
either
(a) f is continuous or
(b) X has the following property:

(i) if for a non-decreasing sequence mw(xn, x)→ 0, then

gxn ≤ gx for all n. (4)

(ii) if for a non-increasing sequence mw(yn, y)→ 0 , then

gy ≤ gyn for all n. (5)

If there exist x0, y0 ∈ X such that

g(x0) ≤ f(x0, y0) and g(y0) ≥ f(y0, x0),

then f and g have a coupled coincidence point.

If (X,≤) is a partially ordered set, we can endowed X ×X with a partial
order as follows:

(x1, y1) ≤ (x2, y2)⇐⇒ x1 ≤ x2 and y2 ≤ y1.
The following uniqueness theorem is a generalization of Theorem 2.2 of [5].

Theorem 2.3. If in Theorem 2.2, we also suppose that for any (x, y) and
(x∗, y∗) in X×X, there is (u, v) ∈ X×X such that (f(u, v), f(v, u)) is com-
parable to (f(x, y), f(y, x)) and (f(x∗, y∗), f(y∗, x∗)), then there is a unique
point (z, w) such that z = gz = f(z, w), w = gw = f(w, z).

Remark 2.4. It is noted that, the relation (31) in the proof of Theorem 2.2
of [2], is not correct because in general ϕ is not non-decreasing.
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Abstract. In this paper we deal with the existence of weak solution
for a p(x)-Kirchhoff type problem of the following form{
−
(
a− b

∫
Ω

1
p(x)
|∆u|p(x) dx

)
∆(|∆u|p(x)−2∆u) = λ|u|p(x)−2u+ g(x, u) in Ω,

u = ∆u = 0 on ∂Ω.

Using the Mountain Pass Theoem, we establish conditions ensuring the
existence result.

1. Introduction

In this paper we study the following problem{
−
(
a− b

∫
Ω

1
p(x) |∆u|

p(x) dx
)

∆(|∆u|p(x)−2∆u) = λ|u|p(x)−2u+ g(x, u) in Ω,

u = ∆u = 0 on ∂Ω.
(1.1)

where Ω ⊂ RN , N ≥ 2 is a bounded smooth domain with smooth boundary
∂Ω, p(x) ∈ C(Ω), a, b > 0 are constants, g is a continuous function, λ is a
real parameter. Suppose that the nonlinearity g(x, t) ∈ C(Ω,R) satisfies the
following assumptions:
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(g1) g : Ω×R→ R satisfies the Carathéodory condition and the subcrit-
ical growth condition, i.e. there exists a constant c≥0 such that

|g(x, s)| ≤ c1(1 + |s|q(x)−1),

for all (x, t) ∈ Ω× R where q(x) ∈ C+(Ω) and q(x) < p∗k(x).

(g2) g(x, s) = o(|s|p(x)−2s) as s→ 0 uniformly with respect to x ∈ Ω.

(g3) There exist M > 0 and θ ∈
(
p+,

2(p−)2

p+

)
such that 0 < θG(x, s) ≤

sg(x, s), for all |s| ≥M and x ∈ Ω where G(x, t) =
∫ s

0 g(x, τ) dτ .

We mainly consider a new Kirchhoff problem involving the p(x)-biharmonic

operator, that is, the form with a nonlocal coefficient (a−b
∫

Ω
1

p(x) |∆u|
p(x) dx).

Its background is derived from nagative Young’s modulus, when the atoms
are pulled apart rather than compressed together and the strain is negative.
Recently, the authors in [6] first studied this kind of problem{

−
(
a− b

∫
Ω |∇u|

2 dx
)

∆u = λ|u|p−2u in Ω,
u = 0 on ∂Ω,

where 2 < p < 2∗ := (2N)/(N − 2), and they obtained the existence of so-
lutions by using the mountain pass theorem. Furthermore, some interesting
results have been obtained for this kind of Kirchhoff-type problem. We refer
the readers to [1, 5, 7] and the references therein.

Now, we state our main result:

Theorem 1.1. Assume that the function q ∈ C(Ω) satisfies

1 < p− < p(x) < p+ < 2p− < q− < q(x) < p∗k(x) :=
Np(x)

N − kp(x)
.

Then for any λ ∈ R, with (g1)-(g3) satisfied, problem (1.1) has a nontrivial
weak solution.

2. Notations and preliminaries

Let Ω be a bounded domain of RN , denote C+(Ω) = {p(x); p(x) ∈
C(Ω), p(x) > 1, ∀x ∈ Ω}, p+ = max{p(x); x ∈ Ω}, p− = min{p(x); x ∈
Ω};, Lp(x)(Ω) = {u : Ω→ R measurable and

∫
Ω |u(x)|p(x) dx <∞}, with the

norm |u|Lp(x)(Ω) = |u|p(x) = inf

{
µ > 0;

∫
Ω

∣∣∣u(x)
µ

∣∣∣p(x)
dx ≤ 1

}
.

Proposition 2.1 (See [3]). The space (Lp(x)(Ω), | · |p(x)) is separable, uni-

formly convex, reflexive and its conjugate space is Lq(x)(Ω) where q(x) is
the conjugate function of p(x), i.e., 1

p(x) + 1
q(x) = 1, for all x ∈ Ω. For u ∈

Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have
∣∣∫

Ω uv dx
∣∣ ≤ ( 1

p− + 1
q−

)
|u|p(x)|v|q(x) ≤

2|u|p(x)|v|q(x).
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The Sobolev space with variable exponent W k,p(x)(Ω) is defined as follows:

W k,p(x)(Ω) = {u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k}, where Dαu =
∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u, with α = (α1, . . . , αN ) is a multi-index and |α| =
∑N

i=1 αi.

The space W k,p(x)(Ω) equipped with the norm ‖u‖k,p(x) =
∑
|α|≤k |Dαu|p(x),

also becomes a separable and reflexive Banach space. For more details, we
refer the reader to [3, 2].

Proposition 2.2 (See [3]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for

all x ∈ Ω, there is a continuous embedding W k,p(x)(Ω) ↪→ Lr(x)(Ω). If we
replace ≤ with <, the embedding is compact.

We denote by W
k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x)(Ω). Note

that the weak solutions of problem (1.1) are considered in the general-

ized Sobolev space X = W 2,p(x)(Ω) ∩W 1,p(x)
0 (Ω) equipped with the norm

‖u‖ = inf

{
µ > 0 :

∫
Ω

∣∣∣∆u(x)
µ

∣∣∣p(x)
dx ≤ 1

}
.

Remark 2.3. According to [4], the norm ‖ · ‖2,p(x) is equivalent to the norm
|∆ · |p(x) in the space X. Consequently, the norms ‖ ·‖2,p(x), ‖ ·‖ and |∆ · |p(x)

are equivalent.

We consider the functional ρ(u) =
∫

Ω |∆u|
p(x) dx and give the following

fundamental proposition.

Proposition 2.4 (See [?]). For u ∈ X and un ⊂ X, we have

(1) ‖u‖ < 1(respectively = 1;> 1)⇐⇒ ρ(u) < 1(respectively = 1;> 1);

(2) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;

(3) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+
;

(4) ‖un‖ → 0 (respectively →∞)⇐⇒ ρ(un)→ 0 (respectively →∞).

3. Proof of Theorem 1.1

We say u ∈ X is a weak solution of (1.1), if

(a− b
∫

Ω

1

p(x)
)|∆u|p(x) dx

∫
Ω
|∆u|p(x)−2∆u∆ϕdx− λ

∫
Ω
|u|p(x)−2uϕdx =∫

Ω
g(x, u)ϕdx,

where ϕ ∈ X. The energy functional J : X → R associated with problem

J(u) = a

∫
Ω

1

p(x)
|∆u|p(x) dx− b

2

(∫
Ω

1

p(x)
|∆u|p(x) dx

)2

(3.1)

− λ
∫

Ω

1

p(x)
|u|p(x) dx−

∫
Ω
G(x, u) dx

for all u ∈ X is well defind and of class C1 in X. Moreover, we have
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〈J ′(u), ϕ〉 = (a− b
∫

Ω

1

p(x)
|∆u|p(x) dx)

∫
Ω
|∆u|p(x)−2∆u∆ϕdx

− λ
∫

Ω
|u|p(x)−2uϕdx−

∫
Ω
g(x, u)ϕdx. (3.2)

Hence, we can observe that the critical points of J are weak solutions of
problem (1.1).

Definition 3.1. Let (X, ‖ · ‖) be a Banach space and J ∈ C1(X). We say
that J satisfies the Palais-Smale condition at level c ((PS)c in short) if any
sequence {un} ⊂ X satisfying J(un)→ c and J ′(un)→ 0 in X∗ as n→∞,
has a convergent subsequence.

Lemma 3.2. Assume that (g1)- (g3) hold. Then the functional J satisfies

the (PS)c condition, where c <
a2

2b
.

Lemma 3.3. Assume that g satisfies (g1)- (g3) . Then J satisfies the
Mountain Pass geometry, that is,

(i) there exists ρ, α > 0 such that J(u) ≥ α > 0, for any u ∈ X with
‖u‖ = ρ.

(ii) there exists e ∈ X with ‖e‖ > ρ such that J (e) < 0.

By Lemmas 3.2, 3.3 and the fact that J(0) = 0, J satisfies the Moun-
tain Pass Theorem. Therefor, problem (1.1) has indeed a nontrivial waek
solution.
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Abstract. This article is concerned with the existence of weak solu-
tion for a class of elliptic Navier boundary value problem involving the
(p1(x), p2(x))-biharmonic operator. By means of variational methods
and the theory of variable exponent Sobolev spaces, we establish the
existence of a non-trivial weak solution for problem.

1. Introduction

In recent years, a great attention has been paid to the study of various
mathematical problems with variable exponent. Fourth order equations ap-
pears in many contexts. Some of these problems come from different areas
of applied mathematics and physics such as Micro Electro-mechanical sys-
tems, surface diffusion on solids, flow in Hele-Shaw cells [5].
In this work, we consider the problem

M1

(∫
Ω

1
p1(x) |∆u|

p1(x) dx
)

∆2
p1(x)u+

M2

(∫
Ω

1
p2(x) |∆u|

p2(x) dx
)

∆2
p2(x)u = f(x, u) in Ω,

u = ∆u = 0 on ∂Ω,

(1.1)

where Ω ⊂ RN , N ≥ 2 is a bounded smooth domain with smooth boundary
∂Ω, N ≥ 1, ∆2

pi(x)u := ∆(|∆u|pi(x)−2∆u), is the p(x)-biharmonic operator
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Key words and phrases. Bi-nonlocal elliptic problem, Navier boundary condition,
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with ,pi(x) ∈ C(Ω), (i = 1, 2) such that 1 < p−i := infx∈Ω pi(x) ≤ p+
i :=

supx∈Ω pi(x) < +∞, Mi : R+ → R+ are differentiable functions and f(x, u) :
Ω× R→ R is a Caratheodory function.
Problem (1.1) is related to the stationary version of a model, the so-called
Kirchhoff equation, introduced by Kirchhoff [6]. Throughout this paper,
we make the following assumptions on the function f and the Kirchhoff
functions M1 and M2.

(H0) ∃ m0,m1 > 0 such that M1(t) ≥ 0 and M2(t) ≥ 0 for all t ≥ 0.

(H1) ∃ µ1, µ2 ∈ (0, 1) such that M̂i(t) ≥ (1−µi)Mi(t)t for all t ≥ 0, where

M̂i(t) =
∫ t

0 Mi(s) ds, i = 1, 2.
(H2) M1,M2 are differentiable and decreasing functions on R+.

(f0) |f(x, t)| ≤ C(1 + |t|q(x)−1) for all (x, t) ∈ Ω × R with C ≥ 0 and
1 < q(x) < p∗M (x), where pM (x) = max{p1(x), p2(x)}, for all x ∈ Ω,
and p∗M (x) is the critical exponent of pM .

(f1) lim|t|→∞
F (x,t)

|t|
p+
M

1−µ

= +∞, uniformly for a.e. x ∈ Ω, where µ = max{µ1, µ2}

and F (x, t) =
∫ t

0 f(x, s) ds.
(f2) There exists θ ≥ 1 such that θG(x, t) ≥ G(x, st) for (x, t) ∈ Ω × R

and s ∈ [0, 1], where G(x, t) = f(x, t)t− p+M
1−µF (x, t).

(f3) limt→0
F (x,t)

|t|p
+
M

= 0, uniformly for a.e. x ∈ Ω.

Now, we are ready to state our main result:

Theorem 1.1. Suppose that the conditions (H0)-(H2) and (f0)-(f3) hold
true, then problem (1.1) has at least one nontrivial weak solution.

2. Notations and preliminaries

Let Ω be a bounded domain of RN , denote C+(Ω) = {p(x); p(x) ∈
C(Ω), p(x) > 1, ∀x ∈ Ω}, p+ = max{p(x); x ∈ Ω}, p− = min{p(x); x ∈
Ω};, Lp(x)(Ω) = {u : Ω→ R measurable and

∫
Ω |u(x)|p(x) dx <∞}, with the

Luxemburg norm |u|Lp(x)(Ω) = |u|p(x) = inf{µ > 0;
∫

Ω

∣∣∣u(x)
µ

∣∣∣p(x)
dx ≤ 1}.

Proposition 2.1 (See [3]). The space (Lp(x)(Ω), | · |p(x)) is separable, uni-

formly convex, reflexive and its conjugate space is Lq(x)(Ω) where q(x) is
the conjugate function of p(x), i.e., 1

p(x) + 1
q(x) = 1, for all x ∈ Ω. For u ∈

Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have
∣∣∫

Ω uv dx
∣∣ ≤ ( 1

p− + 1
q−

)
|u|p(x)|v|q(x) ≤

2|u|p(x)|v|q(x).

The Sobolev space with variable exponentW k,p(x)(Ω) is defined asW k,p(x)(Ω) =

{u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k}, where Dαu = ∂|α|

∂x
α1
1 ∂x

α2
2 ...∂x

αN
N

u,

with α = (α1, . . . , αN ) is a multi-index and |α| =
∑N

i=1 αi. The space
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W k,p(x)(Ω) equipped with the norm ‖u‖k,p(x) =
∑
|α|≤k |Dαu|p(x), also be-

comes a separable and reflexive Banach space. For more details, we refer
the reader to [2, 3]. For any k ≥ 1, denote

p∗k(x) =

{
Np(x)

N−kp(x) if kp(x) < N,

+∞ if kp(x) ≥ N

Proposition 2.2 (See [3]). For p, r ∈ C+(Ω) such that r(x) ≤ p∗k(x) for

all x ∈ Ω, there is a continuous embedding W k,p(x)(Ω) ↪→ Lr(x)(Ω). If we
replace ≤ with <, the embedding is compact.

We denote by W
k,p(x)
0 (Ω) the closure of C∞0 (Ω) in W k,p(x)(Ω). Note

that the weak solutions of problem (1.1) are considered in the generalized
Sobolev space X = X1

⋂
X2 equipped with the norm ‖u‖r = ‖u‖p1 + ‖u‖p2 ,

where Xi =
(
W 2,pi(x)(Ω) ∩ W 1,pi(x)

0 (Ω)
)
, i = 1, 2 and ‖u‖r = inf{µ >

0 :
∫

Ω

∣∣∣∆u(x)
µ

∣∣∣r(x)
dx ≤ 1} equipped with the norm ‖u‖ = ‖u‖pi .

Remark 2.3. According to [4], the norm ‖ · ‖2,p(x) is equivalent to the norm
|∆ · |p(x) in the space X. Consequently, the norms ‖ ·‖2,p(x), ‖ ·‖ and |∆ · |p(x)

are equivalent.

We consider the functional ρ(u) =
∫

Ω |∆u|
p(x) dx and give the following

fundamental proposition.

Proposition 2.4 (See [1]). For u ∈ X and {un} ⊂ X, we have

(1) ‖u‖ < 1(respectively = 1;> 1)⇐⇒ ρ(u) < 1(respectively = 1;> 1);

(2) ‖u‖ ≤ 1⇒ ‖u‖p+ ≤ ρ(u) ≤ ‖u‖p− ;

(3) ‖u‖ ≥ 1⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖p+ ;

(4) ‖un‖ → 0 (respectively →∞)⇐⇒ ρ(un)→ 0 (respectively →∞).

Now, we recall the definition of the (C)-condition and then state a defor-
mation lemma, which is fundamental in order to get some min-max theo-
rems.

Definition 2.5. [7] let X be a Banach space and J ∈ C1(X,R). Given
c ∈ R, we say that J satisfies the Cerami c condition (we denote condition
(C)c), if

(i) any bounded sequence {un} ⊂ X such that J(un) → c and J ′(un) → 0
has a convergent subsequence.

(ii) there exist constant δ,R, β > 0 such that ‖J ′(u)‖‖u‖ ≥ β for all u ∈
J−1([c − δ, c + δ]) with ‖u‖ ≥ R. If J ∈ C1(X,R) satisfies condition (C)c
foe every c ∈ R, we say that J satisfies condition (C).

Lemma 2.6. [8] Let X be a Banach space, J ∈ C1(X,R), e ∈ X and
r > 0, be such that ‖e‖ > r and b := inf‖u‖=r J(u) > J(0) ≥ J(e). If
J satisfies the condition (Cc) with c := infγ∈Γ maxt∈[0,1] J(γ(t)), and Γ :=
γ ∈ C([0, 1], X)|γ(0) = 0, γ(1) = e, then c is a critical value of J .
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3. Proof of Theorem 1.1

Define Ip1(x) :=
∫

Ω
1

p1(x) |∆u|
p1(x) dx and Ip2(x) :=

∫
Ω

1
p2(x) |∆u|

p2(x) dx.

The Euler-Lagrange functional associated to (1.1) is

J(u) = M̂1(Ip1(x)) + M̂2(Ip2(x))−
∫

Ω
F (x, u) dx.

Moreover, the derivative of J is given by

〈J ′(u), v〉 = M1(Ip1(x))

∫
Ω
|∆u|p1(x)−2∆u∆v dx

+M2(Ip2(x))

∫
Ω
|∆u|p2(x)−2∆u∆v dx−

∫
Ω
f(x, u)v dx,

for all u, v ∈ X. Then we know that the weak solution of (1.1) corresponds
to the critical point of the functional J . These two Lemmas lead us to get
the proof of our main result:

Lemma 3.1. If (H0)- (H2) and (f0)- (f2) hold, then J satisfies the Cerami
condition.

Lemma 3.2. If (H0)- (H1) and (f1), (f3) hold true, then all the assertions
in Lemma 2.6 are satisfied.
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Abstract. Motivated by Wardowski [Fixed Point Theory Appl. 2012:94,
2012] we introduce and study a new contraction and a new generalized
b-metric space called α-β-F -Γ contraction and Γ-b-metric space respec-
tively to prove a fixed point result as a generalization of the Banach
contraction principle. Moreover, we discuss some illustrative contrac-
tions to highlight the realized improvements.

1. Introduction

After Bakhtin [4] and Czerwik [5, 6] introduced b-metric spaces, many
authors attempted to generalize this practical concept. Kamran and others
[7] presented controlled b-metric spaces. Following that, double-controlled
b-metric spaces were introduced. Generalized b-metric spaces were also in-
troduced by Parvaneh and Ghoncheh [9]. They used a function instead of
the coefficient s, which was always above the half-tone of the first and third
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quarters and did not coincide with its inverse except at zero. This is a ma-
jor limitation. In this article, by removing this limitation, we present a new
category of generalized b-metric spaces, which will certainly be of interest
to many researchers in the field of fixed point theory.

The most well-known conclusion in fixed point theory, the Banach con-
tractive principle or Banach fixed point theorem, states that every con-
tractive mapping in a complete metric space has a unique fixed point. By
applying various types of contractive conditions in different spaces, this re-
sult can be generalized in a huge number of ways. A fixed point conclusion
was demonstrated recently as a generalization of the Banach contraction
principle by Wardowski [1], who also established a new contraction known
as the F-contraction.

One of the interesting results which also generalizes the Banach contrac-
tion principle was given by Samet et al. [2] by defining α-ψ-contractive and
α-admissible mappings.

Definition 1.1. [2] Let T be a self-mapping on a set X and let α : X×X →
[0,∞) be a function. We say that T is an α-admissible mapping if

x, y ∈ X, α(x, y) ≥ 1 =⇒ α(Tx, Ty) ≥ 1.

Definition 1.2. [3] Let f : X → X and α : X × X → [0,+∞). We say
that f is a triangular α-admissible mapping if

(T1) α(x, y) ≥ 1 implies α(fx, fy) ≥ 1, x, y ∈ X;

(T2)

{
α(x, z) ≥ 1

α(z, y) ≥ 1
implies α(x, y) ≥ 1, x, y, z ∈ X.

Lemma 1.3. [3] Let f be a triangular α-admissible mapping. Assume that
there exists x0 ∈ X such that α(x0, fx0) ≥ 1. Define sequence {xn} by
xn = fnx0. Then

α(xm, xn) ≥ 1 for all m,n ∈ N with m < n.

Definition 1.4. [5] Let X be a (nonempty) set and s ≥ 1 be a given real
number. A function d : X ×X → [0,∞) is a b-metric if, for all x, y, z ∈ X,

(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) d(x, z) ≤ s[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a b-metric space.

Substituting the coefficient s by a function Ω : [0,∞)→ [0,∞) with some
constraints, a two-variable function α : X×X → [0,∞) and two two-variable
functions α1, α2 : X ×X → [0,∞) we have extended b-metric spaces, con-
trolled b-metric spaces and double controlled b-metric spaces, respectively.
In this paper, we introduce the concept of α-β-F -Γ-contractions and obtain
some fixed point results in Γ-b-metric spaces. Our results extend those of
Wardowski and several other authors.
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2. Fixed point results for α-admissible β-FG-contractions

Removing some constraints on function Ω we have the following extension
of the concept of b-metric space.

Definition 2.1. Let X be a (nonempty) set. A function d : X × X →
[0,∞) is a Γ-b-metric if there exists a continuous increasing mapping Γ :
[0,∞)→ [0,∞) satisfying limn→∞ Γ(tn) = 0 iff limn→∞ tn = 0 such that for
all x, y, z ∈ X,

(b1) d(x, y) = 0 iff x = y,
(b2) d(x, y) = d(y, x),
(b3) Γ[d(x, z)] ≤ s · Γ[d(x, y) + d(y, z)].

In this case, the pair (X, d) is called a Γ-b-metric space.

Note that a b-metric need not be a continuous function. So, we have this
fact about Γ-b-metric spaces.

Example 2.2. Taking Γ(x) = arcsinhx, the Γ-triangle inequality will be as
follows:

sinh−1[d(x, z)] ≤ s · sinh−1[d(x, y) + d(y, z)].

So,

[d(x, z)] ≤ sinh[s · sinh−1[d(x, y) + d(y, z)]]

=
e2s·ln[[d(x,y)+d(y,z)]+

√
[d(x,y)+d(y,z)]2+1] − 1

2es·ln[[d(x,y)+d(y,z)]+
√

[d(x,y)+d(y,z)]2+1]

=

[
[d(x, y) + d(y, z)] +

√
[d(x, y) + d(y, z)]2 + 1

]2s

− 1

2

[
[d(x, y) + d(y, z)] +

√
[d(x, y) + d(y, z)]2 + 1

]s .

Example 2.3. Having any b-metric db on a nonemty set X, the function
d : X ×X → [0,∞) with d(x, y) = Υ(db(x, y)), where Υ : [0,∞)→ [0,∞) is
a invertible subadditive mapping, is a Γ-b-metric on X with Γ(x) = Υ−1(x).

Example 2.4. Having any b-metric db on a nonemty set X, the function
d : X ×X → [0,∞) with d(x, y) = sinh(db(x, y)) is a Γ-b-metric on X with
Γ(x) = sinh−1(x).

Lemma 2.5. Let (X, d) be a Γ-b-metric, and suppose that {xn} and {yn}
are Γ-b-convergent to x and y, respectively. Then we have

1

s2
Γ[d(x, y)] ≤ Γ[lim inf

n→∞
d(xn, yn)] ≤ Γ[lim sup

n→∞
d(xn, yn)] ≤ s2 · Γd(x, y).
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In particular, if x = y, then we have lim
n→∞

d(xn, yn) = 0. Moreover, for each

z ∈ X, we have,

1

s
Γ[d(x, z)] ≤ lim inf

n→∞
Γ[d(xn, z)] ≤ lim sup

n→∞
Γ[d(xn, z)] ≤ s · Γ[d(x, z)].

Let s > 1 be a fixed real number. We will consider the following classes
of functions.

∆F will denote the set of all functions F : R+ → R such that

(∆1) F is continuous and strictly increasing;
(∆2) for each sequence {tn} ⊆ R+, lim

n→∞
tn = 0 if and only if lim

n→∞
F (tn) =

−∞.

∆F,β will denote the set of pairs (F, β), where F : R+ → R and β :
[0,∞)→ [0, 1), such that

(∆3) for each sequence {tn} ⊆ R+, lim sup
n→∞

F (tn) ≥ 0 if and only if

lim sup
n→∞

tn ≥ 1.

(∆4) for each sequence {tn} ⊆ [0,∞), lim sup
n→∞

β(tn) = 1 implies lim
n→∞

tn =

0;

(∆5) for each sequence {tn} ⊆ R+,
∞∑
n=1

F (β(tn)) = −∞;

Definition 2.6. Let (X, d) be a Γ-b-metric space and let T be a self-mapping
on X. Also suppose that α : X × X → [0,∞) be a function. We say
that T is an α-β-F -Γ-contraction if for all x, y ∈ X with 1 ≤ α(x, y) and
d(Tx, Ty) > 0 we have

F
(
sΓ[d(Tx, Ty)]

)
≤ F

(
Γ[Ms,Γ(x, y)]

)
+ F

(
β(Ms,Γ(x, y))

)
, (2.1)

where F ∈ ∆F , (F, β) ∈ ∆F,β and

Ms,Γ(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

Γ−1[d(x,Ty)+d(y,Tx)
s ]

2

}
. (2.2)

Now we state and prove our main result of this section.

Theorem 2.7. Let (X, d) be a complete Γ-b-metric space. Let T : X → X
be a self-mapping satisfying the following assertions:

(i) T is a triangular α-admissible mapping;
(ii) T is an α-β-F -Γ-contraction;

(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iv) T is α-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point if α(x, y) ≥ 1
for all x, y ∈ Fix(T ).

Taking F (t) = ln t, β(x) = k where k ∈ (0, 1), and putting Γ(x) = x2

in the above theorem, we obtain a generalization of the Banach contraction
principle in the setup of Γ-b-metric spaces.
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Corollary 2.8. Let (X, d) be a complete Γ-b-metric space. Let T be a self-
mapping on X and α : X×X → [0,∞) be a function such that the mapping
T satisfies the following assertions:

(i) T is a triangular α-admissible mapping;
(ii)

d(Tx, Ty) <
√
k/s
(
Ms,Γ(x, y)

)
,

for all x, y ∈ X with 1 ≤ α(x, y) and d(Tx, Ty) > 0;
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;
(iv) T is α-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when
α(x, y) ≥ 1 for all x, y ∈ Fix(T ).

In the following theorem we replace the α-continuity of T by another
condition (iv′).

Theorem 2.9. Let (X, d) be a complete Γ-b-metric space. Let T : X → X
be a self-mapping and suppose that α : X ×X → [0,∞) be a function such
that:

(i) T is a rectangular α-admissible mapping;
(ii) T is an α-β-F -Γ-contraction;
(iii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1;

(iv′) if {xn} be a sequence in X such that α(xn, xn+1) ≥ 1 with xn → x
as n→∞, then 1 ≤ α(Txn, Tx) holds for all n ∈ N.

Then T has a fixed point. Moreover, T has a unique fixed point whenever
α(x, y) ≥ 1 for all x, y ∈ Fix(T ).

References

1. D. Wardowski, Fixed points of a new type of contractive mappings in complete metric
spaces, Fixed Point Theory Appl., 2012, 2012:94.

2. B. Samet, C. Vetro and P. Vetro, Fixed point theorem for α-ψ-contractive type map-
pings, Nonlinear Anal., 75 (2012) 2154–2165.

3. E. Karapınar, P. Kumam and P. Salimi, On α-ψ-Meir-Keeler contractive mappings,
Fixed Point Theory Appl., 2013, 2013:94.

4. I. A. Bakhtin, The contraction principle in quasimetric spaces [in Russian], Funk. An.
Ulianowsk Fos. Ped. Inst. 30 (1989), 26–37.

5. S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inf. Univ. Ostrav.,
1 (1993), 5–11.

6. S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem.
Mat. Fis. Univ. Modena, 46 (1998), 263–276.

7. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and
the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]

8. Abdeljawad T, Mlaiki N, Aydi H, Souayah N. Double Controlled Metric
Type Spaces and Some Fixed Point Results. Mathematics. 2018; 6(12):320.
https://doi.org/10.3390/math6120320

9. Parvaneh, V., Ghoncheh, S.J.H.: Fixed points of (ψ,ϕ)Ω-contractive mappings in or-
dered P -metric spaces. Global Anal. Discrete Math. 4(1), 15–29 (2020)

191



Oral Presentation ∗ : Speaker

A NEW EXTENSION OF G-METRIC SPACES

BABAK MOHAMMADI∗, ABDOLLAH DINMOHAMMADI, VAHID PARVANEH

Department of Mathematics, Marand Branch, Islamic Azad University, Marand, Iran
babakmohammadi28@yahoo.com

Department of Mathematics, Buein Zahra Thechnical University, Buein Zahra, Qazvin,
Iran

dinmohammadi@bzte.ac.ir
Department of Mathematics, Gilan-E-Gharb Branch, Islamic Azad University,

Gilan-E-Gharb, Iran
zam.dalahoo@gmail.com

Abstract. In this paper we present some fixed point results for Banach
and Kannan contractive mappings in the setup of sequential G-metric
spaces. This new structure, is a generalization of both G-metric spaces
and Gb-metric spaces.

1. Introduction

Over the past few decades, experts in fixed point theory have general-
ized the traditional metric structure multiple times. In order to prove fixed
point theorems utilizing various contractive, expansive, or non-expansive
type mappings, various topologically organized spaces are necessary. Fixed
point theory is becoming more and more popular in the mathematical com-
munity, particularly among young academics working on functional analysis,
as a result of the existence of such fascinating spaces and the different types
of applications of fixed point theorems therein. All existing generalizations
of the concept of metric space emphasize the change in several components:
one is the change of the domain of the metric mapping from the Cartesian
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product of a set in itself to the Cartesian product of higher orders; the other
is the change of triangle inequality; the other is the elimination of the sym-
metry property of the meter, which leads to the definition of quasi-metric
spaces; and another is the change in the first condition of the meter, which
expresses the zero distance of an element to itself, or a change in several
cases at the same time. However, these changes, either individually or in
combination, lead to the production of new generalized metric spaces with
different topological behaviors. However, the main task is to obtain pre-
viously proven fixed-point results under weaker conditions and with fewer
assumptions than before. It goes without saying that the results obtained
in this field are impressive and thought-provoking.

Here, we define a few generic spaces that are important to our research.

Definition 1.1. (b-metric space)[4, 5] Let Λ be a nonempty set and s be a
real number satisfying s ≥ 1. A function ρb : Λ× Λ→ R+ is a b−metric on
Λ if:

1. ρb(ι, κ) = 0 if and only if ι = κ;
2. ρb(ι, κ) = ρb(κ, ι) for all ι, κ ∈ Λ;
3. ρb(ι, z) ≤ s[ρb(ι, κ) + ρb(κ, z)] for all ι, κ, z ∈ Λ.

The space (Λ, ρb) is called a b−metric space.

Let Λ be a non-empty set and ρg : Λ×Λ→ [0,∞] be a mapping. For any
ι ∈ Λ, let us define the set

C(ρg,Λ, ι) = {{ιn} ⊂ Λ : lim
n→∞

ρg(ιn, ι) = 0}. (1.1)

Definition 1.2. (JS-metric space)[6] Let ρg : Λ×Λ→ [0,∞] be a mapping
which satisfies:

1. ρg(ι, κ) = 0 implies ι = κ;
2. for every ι, κ ∈ Λ, we have ρg(ι, κ) = ρg(κ, ι);
3. if (ι, κ) ∈ Λ×Λ and {ιn} ∈ C(ρg,Λ, ι) then ρg(ι, κ) ≤ p lim sup

n→∞
ρg(ιn, κ),

for some p > 0.
The pair (Λ, ρg) is called a generalized metric space, usually known as
JS−metric space or sequential metric space.

The concept of generalized metric space, or a G-metric space, was intro-
duced by Mustafa and Sims [3].

Definition 1.3. (G-Metric Space, [3]) Let X be a nonempty set and G :
X ×X ×X → R+ be a function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z 6= y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three

variables);
(G5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z), for all x, y, z, a ∈ X (rectangle

inequality).
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Then, the function G is called a G-metric on X and the pair (X,G) is
called a G-metric space.

Aghajani et al. in [2] introduce the concept of generalized b-metric spaces,
or Gb-metric spaces as follows

Definition 1.4. (Gb-Metric Space) Let X be a nonempty set and G: X ×
X ×X → R+ be a function satisfying the following properties:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y;
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z 6= y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = · · · , (symmetry in all three

variables);
(G5) G(x, y, z) ≤ s(G(x, a, a) + G(a, y, z)), for all x, y, z, a ∈ X and for

some s ≥ 1. (rectangle inequality).
Then, the function G is called a Gb-metric on X and the pair (X,G) is

called a Gb-metric space.

Then they present some basic properties of Gb-metric spaces. In this
paper, we introduce sequential G-metric and obtain some fixed point theo-
rems for Banach and Kannan contractive mappings in sequential G-metric
spaces. This results generalize and modify several comparable results in the
literature.

2. Main results

The following is the definition of sequential G-metric spaces.

Definition 2.1. Let X be a nonempty set and p > 0 be a given real number.
Suppose that a mapping G: X ×X ×X → R+ satisfies:

(Gb1) G(x, y, z) = 0 implies x = y = z,
(Gb2) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z,
(Gb3) G(x, y, z) = G(p{x, y, z}), where p is a permutation of x, y, z (symmetry),
(Gb4) G(x, y, z) ≤ p · lim sup

n−→∞
G(xn, y, z) for all x, y, z ∈ X and for all {xn}

which is G-convergent to x.

Then G is called a sequential G-metric and the pair (X,G) is called a se-
quential G-metric space.

Inspired from [1] we have the following example.

Example 2.2. Let Λ = N and the metric σ : Λ2 → [0,∞) be defined by
σ(1, 1) = 0;

σ(n, n) = e− 1, for n ≥ 2;

σ(1, n) = σ(n, 1) = e
1

n+1 − 1, for n ≥ 2;

σ(n,m) = σ(m,n) = emn − 1, for all n,m ≥ 2 with n 6= m.

Then, σ is a sequential metric on Λ.
Define G: X×X×X → R+ by G(x, y, z) = max{σ(x, y), σ(y, z), σ(z, x)}.
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Remark 2.3. Any G-metric space, Gb−metric space are also sequential G-
metric spaces.

Proposition 2.4. In a sequential G-metric space (Λ, G) if a sequence {an}
is convergent, then it converges to a unique element in Λ.

Proof. Suppose a, b ∈ X be such that an → a and an → b as n→∞. Then

we have, G(a, b, b) ≤ p
(

lim sup
n→∞

G(an, b, b)

)
implying that G(a, b, b) ≤ 0 i.e.,

a = b. �

Proposition 2.5. Let (X,G) be a sequential G-metric space and {an} ⊂ X
converges to some a ∈ X. Then G(a, a, a) = 0.

Proof. Since {an} converges to a ∈ X, so lim
n→∞

G(an, a, a) = 0. Therefore we

have G(a, a, a) ≤ p(lim sup
n→∞

G(an, a, a)) = 0 which implies G(a, a, a) = 0. �

Proposition 2.6. Let {an} be a Cauchy sequence in a sequential G-metric
space (X,G). If {an} has a convergent sub-sequence {ank

} which converges
to a ∈ X, then {an} also converges to a ∈ X.

Proof. From condition (Gb5) of Definition 2.1 we have

G(an, a, an) ≤ p
(

lim sup
k→∞

G(an, ank
, an)

)
which implies that p−1 (G(an, a, an)) ≤ lim sup

k→∞
G(an, ank

, an) for all n ∈ N.

Due to the Cauchyness of {an} it follows that lim
n,k→∞

G(an, ank
, an) = 0

which implies that G(an, a, an) → 0 as n → ∞. Hence, {an} converges to
a ∈ X. �

Proposition 2.7. In a sequential G-metric space (X,G), if a self mapping
T is continuous at a ∈ X, then {Tan} → Ta.

Proof. Let ε > 0 be given. Since T is continuous at a, there exists δε > 0
such that G(c, a, a) < δε implies G(Tc, Ta, Ta) < ε.

As {an} converges to a, so for δε > 0 there exists N ∈ N such that
G(an, a, a) < δε for all n ≥ N. Therefore, for any n ≥ N , G(Tan, Ta, Ta) < ε
and thus Tan → Ta as n→∞. �

Remark 2.8. 1. In a metric space, a convergent sequence is always
Cauchy, but it is not true in a sequential G-metric space. In Ex-
ample 2.2, the sequence {n}n≥2 converges to 1, but G(o, n,m) =
max{eon − 1, enm − 1, emo − 1} 6→ 0 whenever o, n,m→∞.

2. In a metric space, if {an} and {bn} are two sequences converging to a
and b respectively then G(an, bn)→ G(a, b) as n→∞. But this does
not always hold in a sequential G-metric space. In Example 2.2, let
us consider two sequences {2n}n≥1 and {2n+1}n≥1 in G. Then both
of these two sequences converge to 1 ∈ Λ, but G(2n, 2n+1, 2n+1) 6→
0 as n→∞.
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3. A G-metric and Gb-metric is always a sequential G-metric space,
but the converse is not true in general. For example, the metric G
defined in Example 2.2 is not a Gb-metric (and so is not a G-metric).
Since if it be a Gb-metric, then G(n,m, 1) ≤ b(G(n, 1, 1)+G(1,m, 1))

for all n,m ≥ 2 with n 6= m, then max{enm−1, e
1

n+1 −1, e
1

m+1 −1} ≤
b(e

1
n+1 − 1 + e

1
m+1 − 1) for all n,m ≥ 2. Taking limit as n→∞ we

get ∞ ≤ 0, which is a contradiction.

Definition 2.9. Let X be a sequential G-metric space. We define

dG(x, y) = G(x, y, y) +G(x, x, y),

for all x, y ∈ X. It is easy to see that dG defines a sequential metric on X,
which we call it the sequential metric associated with G.

Theorem 2.10. Let (X,G) be a complete sequential G-metric space and
Υ : G→ G be a mapping so that:

(i) G(Υa, Υb, Υ c) ≤ αG(a, b, c) for all a, b, c ∈ G and for some α ∈ (0, 1),
(ii) there exists a0 ∈ G such that

δ(G,Υ, a0) := sup
{
G
(
Υ ia0, Υ

ja0, Υ
ka0

)
: i, j, k = 1, 2, · · ·

}
<∞.

Then Υ has at least one fixed point in G. Moreover, if a and b are two fixed
points of Υ in G with G(a, b, b) <∞, then a = b.

Theorem 2.11. Let (X,G) be a complete sequential G-metric space and
Υ : G→ G such that:

(i) G(Υa, Υb, Υ c) ≤ γ[G(a, Υa, Υa) + G(b, Υ b, Υ b) + G(c, Υ c, Υ c)] for all
a, b, c ∈ G and for some γ ∈ (0, 13),

(ii) there exists a0 ∈ G such that

δ(G,Υ, a0) := sup
{
G
(
Υ ia0, Υ

ja0, , Υ
ka0

)
: i, j, k = 1, 2, · · ·

}
<∞.

Then the Picard iterating sequence {an}, an = Υna0 for all n ∈ N, converges
to some a ∈ G. If G(a, Υa, Υa) <∞, then a is a fixed point of Υ . Moreover
if b is a fixed point of Υ in G such that G(a, b, b) < ∞ and G(b, b, b) < ∞
then a = b.
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Abstract. In this work, we first prove an numerical inequality. Then,
we present some inequalities for positive operators and linear maps.

1. Introduction

In what follows, we denote by B(H)) the space of all bounded linear
operators on a Hilbert space (H,< ., . >). We say the operator A is positive
if < Ax, x >≥ 0 for all x ∈ H and write A ≥ 0, is invertible positive if
< Ax, x >> 0 for all x ∈ H and write A > 0. For two selfadjoint operators
A,B ∈ B(H), we say A ≥ B(A > B) if A−B ≥ 0 (A−B > 0), respectively.
The adjoint of the operator A define by A∗ and its absolute value by |A|, that

is, |A| = (A∗A)
1
2 . A linear map Φ is called positive if Φ(A) ≥ 0 whenever A ≥

0. It is said to be unital if Φ(I) = I. For A,B ∈ B(H) such that A and B are
invertible positive and 0 ≤ ν ≤ 1, we utilize the following notations to define
the geometric mean A]νB and the arithmetic mean A∇νB, respectively,

A#νB = A
1
2 (A−

1
2BA−

1
2 )νA

1
2 and A5ν B = νA+ (1− ν)B.

For A,B ∈ B(H) such that are invertible positive and 0 ≤ ν ≤ 1, we have
operator Young inequality as follows:

A#νB ≤ A∇νB. (1.1)
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The Lowner-Heinz theorem [6] states that if A,B ∈ B(H) are positive, then
for 0 ≤ p ≤ 1,

A ≤ B implies Ap ≤ Bp. (1.2)

In general (1.2) is not true for p > 1. M. Lin [5] reversed (1.1) using the
Katorovich constant as follows: If 0 < m ≤ A,B ≤ M and Φ are a unital
positive linear map. Then

ϕ2(A∇B) ≤ K2(h)ϕ2(A#B), ϕ2(A∇B) ≤ K2(h)(ϕ(A)#ϕ(B))2, (1.3)

where K(h) = (1+h)2

4h with h = M
m is the Kantorovich constant.

2. Main results

Furuichi et al. in [4] showed that for 0 < x ≤ 1 and 0 ≤ ν ≤ 1, the
following inequality holds:

mν(x)xν ≤ (1− ν) + νx, (2.1)

where mν(x) = 1 + 2νν(1−ν)(x−1)2
(x+1)1+ν and 1 ≤ mν(x). The next Lemma is an

refinement of (2.1).

Lemma 2.1. Let 0 < x ≤ 1. If 0 ≤ ν ≤ 1
2 , then

m2ν(
√
x)xν + ν(

√
x− 1)2 ≤ (1− ν) + νx, (2.2)

where m2ν(
√
x) defined as (2.1).

Proof. Letting 0 ≤ ν ≤ 1
2 . By an simple computation

(1− ν) + νx− ν(
√
x− 1)2 = 2ν

√
x+ (1− 2ν).

By applying (2.1) for the relation above,

m2ν(
√
x)xν ≤ (1− 2ν) + 2ν

√
x.

Therefore, (2.2) is proved. �

For a operator version of the inequality (2.2), see Theorem 2.2.

Theorem 2.2. Let A,B ∈ B(H) are two invertible positive operators such

that 0 < m ≤ A ≤ m′ < M
′ ≤ B ≤M or 0 < m ≤ B ≤ m′ < M

′ ≤ A ≤M
for some positive real numbers m,m

′
,M,M

′
. Then for 0 ≤ ν ≤ 1

2

A∇νB ≥ m2ν(
√
h)A]νB + ν(A∇B −A]B), (2.3)

where m2ν(
√
x) defined as (2.1).

Proof. The condition 0 < m ≤ A ≤ m
′
< M

′ ≤ B ≤ M ensure us that

Sp
(
A−

1
2BA−

1
2

)
⊂ [h

′
, h], where h = M

m and h = M
′

m′
. On the other hand,

(2.2) implies that

min√
h′≤
√
x≤
√
h≤1

m2ν(
√
x)xν + ν(

√
x− 1)2 ≤ (1− ν) + νx, (2.4)
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If we set A−
1
2BA−

1
2 in the inequality (2.4) and use from the decreasing

property m2ν(
√
x), the following inequality deduces

νA−
1
2BA−

1
2 + (1− ν)I

≥ m2ν(
√
h)

(
A−

1
2BA−

1
2

)ν
+ ν(A−

1
2BA−

1
2 + I − 2(A−

1
2BA−

1
2 )

1
2 ). (2.5)

Multiplying both sides of the inequality (2.5) by A
1
2 , we can get to the

desired result. Similarly, the condition 0 < m ≤ B ≤ m
′
< M

′ ≤ A ≤ M
concludes the desired result. �

Remark 2.3. AsA∇B−A]B ≥ 0. By (2.3), we haveA∇νB ≥ m2ν(
√
h)A]νB.

From m2ν(
√
h) ≥ 1, (??) is a refinement of (1.1).

2.1. The higher powers using positive mps.

Lemma 2.4. [3] Let A ∈ B(H) be positive and Φ be a positive unital linear
map. Then

Φ(A)−1 ≤ Φ
(
A−1

)
. (2.6)

Lemma 2.5. [2]-[1] Let A,B ≥ 0. Then for 1 ≤ r <∞

‖AB‖ ≤ 1

4
‖A+B‖2. (2.7)

‖Ar +Br‖ ≤ ‖(A+B)r‖. (2.8)

Theorem 2.6. Let A,B ∈ B(H) are two invertible positive operators such

that 0 < m ≤ A ≤ m′ < M
′ ≤ B ≤M or 0 < m ≤ B ≤ m′ < M

′ ≤ A ≤M
for some positive real numbers m,m

′
,M,M

′
and Φ be a normalized positive

linear map. Then for every 0 ≤ ν ≤ 1
2

Φ2(A∇νB + νMm
(
A−1∇B−1 −A−1]B−1

)
) ≤

(
K(h)

m2ν(
√
h)

)2

Φ2(A]νB),

(2.9)

Φ2(A∇νB + νMm
(
A−1∇B−1 −A−1]B−1

)
) ≤

(
K(h)

m2ν(
√
h)

)2

(Φ(A)]νΦ(B))p,

(2.10)

where K(h) = (h+1)2

4h with h = M
m is the Kantorovich constant and m2ν(

√
h)

is as defined in (2.1).

Proof. It is trivial thatA + MmA−1 ≤ M + mandB + MmB−1 ≤ M + m.
An simple computation show that

Φ (A∇vB) +MmΦ
(
A−1∇vB−1

)
≤M +m. (2.11)
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By applying (2.7), (2.6), (2.3)and(2.11), respectively, one can check that∥∥∥Φ(A∇νB + νMm
(
A−1∇B−1 −A−1]B−1

)
)Mmm2ν(

√
h)Φ−1(A]νB)

∥∥∥
≤ 1

4

∥∥∥Φ(A∇νB + νMm
(
A−1∇B−1 −A−1]B−1

)
) +Mmm2ν(

√
h)Φ−1(A]νB)

∥∥∥2
≤ 1

4

∥∥∥Φ(A∇νB + νMm
(
A−1∇B−1 −A−1]B−1

)
) +Mmm2ν(

√
h)Φ(A−1]νB

−1)
∥∥∥2

=
1

4

∥∥∥Φ(A∇νB) +MmΦ
(
ν
(
A−1∇B−1 −A−1]B−1

)
+m2ν(

√
h)(A−1]νB

−1)
)∥∥∥2

≤ 1

4

∥∥Φ(A∇νB) +MmΦ(A−1∇νB−1)
∥∥2

≤ (M +m)2

4
.

This proves the inequality (2.9). The inequality (2.10) can prove similarly.
�

Corollary 2.7. Let A,B ∈ B(H) are two invertible positive operators such

that 0 < m ≤ A ≤ m′ < M
′ ≤ B ≤M or 0 < m ≤ B ≤ m′ < M

′ ≤ A ≤M
for some positive real numbers m,m

′
,M,M

′
and Φ be a normalized positive

linear map. Then for p > 0 and every 0 ≤ ν ≤ 1
2

Φp(A∇νB + νMm
(
A−1∇B−1 −A−1]B−1

)
) ≤

(
K(h)

m2ν(
√
h)

)p
Φp(A]νB),

(2.12)

Φp(A∇νB + νMm
(
A−1∇B−1 −A−1]B−1

)
) ≤

(
K(h)

m2ν(
√
h)

)p
(Φ(A)]νΦ(B))p,

(2.13)

where K(h) = (h+1)2

4h with h = M
m is the Kantorovich constant and m2ν(

√
h)

is as defined in (2.1).

Proof. If 0 < p ≤ 2, then 0 < p
2 ≤ 1. Thus, by Theorem 2.6, we obtain the

desired results. Letting p > 2. By (2.8) and the same method as used in
Theorem 2.6 the inequalities above conclude. �

Remark 2.8. It is clear that A−1∇B−1 −A−1]B−1 ≥ 0. Thus,

Φp(A∇νB) + (νMm)pΦp(A−1∇B−1 −A−1]B−1) ≥ Φp(A∇νB).

In result,

‖Φp(A∇νB)‖ ≤ ‖Φp(A∇νB) + (νMm)pΦp(A−1∇B−1 −A−1]B−1)‖
≤ ‖(Φ(A∇νB) + (νMm)Φ(A−1∇B−1 −A−1]B−1))p‖(by(2.8)).

On the other hand, by (2.1)., m2ν(
√
h) ≥ 1. This shows that hand-left side

of (2.12) and (2.13) is a norm refinement of (1.3) and hand-right side of
(2.12) and (2.13) are tighter than (1.3).
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Abstract. By using variational methods and critical point theory, we
establish the existence of multiple solutions for a Neumann problem. We
prove the existence by applying the theory of variable exponent Sobolev
spaces.

1. Introduction

In the present paper, we want to establish the existence of multiple solu-
tions for the following problem{

−
∑N

i=1 ∂xiai(x, ∂xiu) + h(x)
∑N

i=1 ai(x, u) = λf(x, u) in Ω,∑N
i=1 ai(x, ∂xiu)νi = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN ( N ≥ 3) with smooth boundary ∂Ω,
νi of the outer normal unit vector to ∂Ω, λ is a positive parameter, while
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f : Ω× R→ R and ai : Ω× R→ R are Carathéodory functions and h(x) is
a positive function such that h(.) ∈ L∞(Ω) and

h− = ess inf
x∈Ω

h(x) > 0, (1.2)

and

h+ = ess sup
x∈Ω

h(x) > 0. (1.3)

2. preliminaries

In this section we recall some definition and the main properties of the
spaces with variable exponents together with some results that we need for
the proof of our main results.
Define

C+(Ω) := {p : p ∈ C(Ω) and p(x) > 1, ∀x ∈ Ω}.
For p ∈ C+(Ω), we introduce the Lebesgue space with variable exponent
defined by

Lp(x)(Ω) = {u : u ∈ S(Ω),

∫
Ω
|u(x)|p(x)dx <∞},

where S(Ω) denotes the set of all measurable real functions on Ω.
This space, endowed with the Luxemburg norm

|u|Lp(x)(Ω) = |u|p(x) = inf{τ > 0 :

∫
Ω
|u(x)

τ
|p(x)dx 6 1},

is a separable and reflexive Banach space. We refer to [4, ?, 7, 8] for the
elementary properties of these spaces.

Let

p+ = max
x∈Ω

p(x), p− = min
x∈Ω

p(x).

To recall the definition of the isotropic Sobolev space with variable expo-
nent, W 1,p(x), we set

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

endowed with the norm

‖u‖ = ‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω). (2.1)

The space W 1,p(x)(Ω), equipped with the norm 2.1 becomes a separable,
reflexive and uniformly convex Banach space. See for more details [1].

For u ∈W 1,p(x)(Ω), define

‖u‖h = inf{η > 0 :

∫
Ω

(|∇u
η
|p(x) + h(x)|u

η
|p(x))dx 6 1}. (2.2)

We assume in the sequel that Ω is a bounded open domain in RN and we
denote by

−→p (.) : Ω→ RN
204
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the vectorial function
−→p (.) = (p1(.), ..., pN (.)).

We define W 1,−→p (.)(Ω), the anisotropic variable exponent Sobolev space with
respect to the norm

‖u‖−→p (.) = ‖u‖W 1,−→p (.)(Ω) =

N∑
i=1

inf{σ > 0 ; (

∫
Ω
|∂xiu
σ
|pi(x)dx+

∫
Ω
h(x)|u

σ
|pi(x)dx) 6 1}.

(2.3)

It was argued in [5] that W 1,−→p (.)(Ω) is a reflexive Banach space and a seper-
able space.

In [2] Bonnano proposed the following innovative theorems for the study
of nonlinear problems:

Theorem 2.1. ([2] Theorem 5.2) Let X be a reflexive real Banach space,
Φ : X → R be a sequentially weakly lower semicontinuous, coercive, and con-
tinuously Gâteaux differentiable functional whose Gâteaux derivative admits
a continuous inverse on X∗, and Ψ : X → R be a continuously Gâteaux dif-
ferentiable functional whose Gâteaux derivative is compact. Let Iλ = Φ−λΨ
and for fix r > infX Φ let ϕ be the function defined as

ϕ(r) := inf
v∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[) Ψ(u)−Ψ(u)

r − Φ(v)
.

Then, for each λ ∈]0,
1

ϕ(r)
[ there is u0,λ ∈ Φ−1(]−∞, r[) such that Iλ(u(0,λ)) 6

Iλ(u) for all u ∈ Φ−1(]−∞, r[) and I ′λ(u(0,λ)) = 0.

Now, we state our first main results as follows.

Theorem 2.2. Assume that

sup
γ>0

min{k1, ..., kn}γp
−
−∫

Ω sup|t|6γ F (x, t)dx
> p+

+c
p−− , (2.4)

where c is the constant defined in (??). Then the problem (1.1) admits at

least one weak solution in W 1,−→p (.)(Ω).

Now, we state second main results to find three weak solutions for the
problem (1.1). Our approach is the following problem:

Theorem 2.3 ([2, Theorem 7.1]). Let X be a real Banach space and let
Φ,Ψ : X → R be two continuously Gâteaux differentiable functions with Φ
bounded from below. Assume that there is r ∈ ]infXΦ, supXΨ[ such that

ϕ(r) < ρ(r),

where

ϕ(r) := inf
v∈Φ−1(]−∞,r[)

supu∈Φ−1(]−∞,r[) Ψ(u)−Ψ(v)

r − Φ(v)
,
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and

ρ(r) := sup
v∈Φ−1(]r,∞[)

Ψ(v)− supu∈Φ−1(]−∞,r[) Ψ(u)

Φ(v)− r
.

and for each λ ∈
]

1

ρ(r)
,

1

ϕ(r)

[
the function Iλ = Φ − λΨ is bounded from

below and satisfies (PS)-condition.

Then, for each λ ∈
]

1

ρ(r)
,

1

ϕ(r)

[
the function Iλ admits at least three critical

points.

Theorem 2.4. Assume that c be a positive constants with∫
Ω sup|t|≤c F (x, t)dx

r
<

∫
Ω F (x, δ)dx

ζcp
+
+

, (2.5)

and

0 < r < h−min {k1, . . . , kN}
δp
−
−

p+
+

meas(Ω) (2.6)

Then, for each parameter λ belonging to

Λ(r,δ) := (2.7)]
ζcp

+
+∫

Ω F (x, δ)dx
,

r∫
Ω sup|t|≤c F (x, t)dt

[
,

the problem (1.1) possesses at least three distinct weak solutions in W 1,−→p (.)(Ω).
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Abstract. Let B(H) be the algebra of all bounded linear operators on
infinite-dimensional complex Hilbert space H. Fix ε > 0 and T ∈ B(H),
let σε(T ) denote the ε-pseudo spectrum of T . In this note, we show if
the surjective map ϕ on B(H) satisfies

σε(TS − ST ∗) = σε(ϕ(T )ϕ(S)− ϕ(S)ϕ(T )∗), (T, S ∈ B(H)),

then there exists a unitary operator U ∈ B(H) such that ϕ(T ) = µUTU∗

for every T ∈ B(H), where µ ∈ {−1, 1}.

1. Introduction

Throughout this paper, B(H) stands for the algebra of all bounded linear
operators acting on an infinite dimensional complex Hilbert space (H, 〈, 〉)
and its unit will be denoted by I. Let Bs(H) (resp. Ba(H)) be the real
linear space of all self-adjoint (resp. anti-self-adjoint) operators in B(H).
For an operator T ∈ B(H), the adjoint and the spectrum of T are denoted
by T ∗ and σ(T ), respectively. For ε > 0, the ε-pseudo spectrum of T , σε(T ),
is defined by σε(T ) = ∪{σ(T +A) : A ∈ B(H), ‖A‖ ≤ ε} and coincides with
the set

{λ ∈ C : ‖(λI − T )−1‖ ≥ ε−1

2020 Mathematics Subject Classification. Primary 47B49; Secondary 47A10, 47B48
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with the convention that ‖(λI − T )−1‖ = ∞ if λ ∈ σ(T ). It is a compact
subset of C and contains σ(T ), the spectrum of T . Unlike the spectrum,
which is a purely algebraic concept, the ε-pseudo spectrum depends on the
norm. The ε-pseudo spectral radius of T , rε(T ), is given by

rε(T ) = sup{|λ| : λ ∈ σε(T )}.

Pseudo spectra are a useful tool for analyzing operators, furnishing a lot
of information about the algebraic and geometric properties of operators
and matrices. They play a very natural role in numerical computations,
especially in those involving spectral perturbations. The book [5] gives an
extensive account of the pseudo spectra, as well as investigations and appli-
cations in numerous fields.

Linear preserver problems, in the most general setting, demands the char-
acterization of maps between algebras that leave a certain property, a partic-
ular relation, or even a subset invariant. In all cases that have been studied
by now, the maps are either supposed to be linear, or proved to be so. This
subject is very old and goes back well over a century to the so-called first lin-
ear preserver problem, due to Frobenius [4], who characterized linear maps
that preserve the determinant of matrices. The study of nonlinear pseudo
spectrum preserver problems attracted the attention of a number of authors.
Cui et al. [2, Theorem 3.3] characterized maps on Mn(C) that preserve the
ε-pseudo spectrum of the usual product of matrices. They proved that a
map ϕ on Mn(C) satisfies

σε(ϕ(T )ϕ(S)) = σε(TS) (T, S ∈Mn(C))

if and only if there exist a scalar c = ±1 and a unitary matrix U ∈ Mn(C)
such that ϕ(T ) = cUTU∗ for all T ∈Mn(C). This result was extended to the
infinite dimensional case by Cui et al. [3, Theorem 4.1], where the authors
showed that a surjective map ϕ on B(H) preserves the ε-pseudo spectrum
of the product of operators if and only if it is a unitary similarity transform
up to a scalar c = ±1. The aim of this note is to characterize mappings on
B(H) that preserve the ε-pseudo spectral of the skew Lie product “[T, S]∗ =
TS − ST ∗” of operators. For two nonzero vectors x and y in H, let x ⊗ y
stands for the operator of rank at most one defined by

(x⊗ y)z = 〈z, y〉x, ∀ z ∈ H.

Note that every rank one operator in B(H) can be written in this form,
and that every finite rank operator T ∈ B(H) can be written as a finite
sum of rank one operators; i.e., T =

∑n
i=1 xi ⊗ yi for some xi, yi ∈ H and

i = 1, 2, ..., n. We denote by F (H) the set of all finite rank operators in
B(H) and Fn(H) the set of all operators of rank at most n, n is a positive
integer.
In the following proposition, we collects some known properties of the ε-
pseudo spectrum which are needed in the proof of the main result.
Let ε > 0 be arbitrary and D(0, ε) = {µ ∈ C : |µ− a| < ε}, where a ∈ C.
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Proposition 1.1. (See [3, 5].)
Let α > 0 and let T ∈ B(H).
(1) σ(T ) +D(0, ε) ⊆ σε(T ).
(2) If T is normal, then σε(T ) = σ(T ) +D(0, ε).
(3) For any α ∈ C, σε(T + αI) = α+ σε(T ).
(4) For any nonzero α ∈ C, σε(αT ) = ασ ε

|α|
(T ).

(5) For any α ∈ C, we have σε(T ) = D(α, ε) if and only if T = αI.
(6) If α ∈ C is a nonzero scalar, then σε(T ) = D(0, ε)∪D(α, ε) if and only if
there exists a nontrivial orthogonal projection P ∈ P (H) such that T = αP .

2. Main Results

The following lemma is a key tool for the proof of main result and de-
scribes the spectrum of the skew Lie product [x ⊗ y, T ]∗ for any nonzero
vectors x, y ∈ H and operator T ∈ B(H).

Lemma 2.1. (See [1, Lemma 2.1].) For any nonzero vectors x, y ∈ H and
T ∈ B(H), set

∆T (x, y) = (〈Tx, y〉+ 〈Ty, x〉)2 − 4‖x‖2
〈
T 2y, y

〉
and

ΛT (x, y) = (〈x, Ty〉+ 〈Tx, y〉)2 − 4‖x‖2 〈Tx, Ty〉
Then
(1) σ([x⊗ y, T ]∗) = 1

2{0, 〈Tx, y〉 − 〈Ty, x〉 ±
√

∆T (x, y) },
(2) σ([T, x⊗ y]∗) = 1

2{0, 〈Tx, y〉 − 〈x, Ty〉 ±
√

ΛT (x, y) }.

Corollary 2.2. (See [1, Lemma 2.1].) For any x ∈ H and T ∈ B(H), we
have

σ(T (x⊗ x) + (x⊗ x)T ) = {0, 〈Tx, x〉 ±
√
〈T 2x, x〉 }.

The followig theorem is the main result of this paper.

Theorem 2.3. Suppose that a surjective map ϕ : B(H)→ B(H) satisfies

σε(TS − ST ∗) = σε(ϕ(T )ϕ(S)− ϕ(S)ϕ(T )∗), (T, S ∈ B(H)).

Then there exists a unitary operator U ∈ B(H) such that ϕ(T ) = µUTU∗

for every T ∈ B(H), where µ ∈ {−1, 1}.

Proof. The proof of it will be completed after checking several claims.

Claim 1. ϕ is injective and ϕ(0) = 0.

Claim 2. ϕ preserves self-adjoint and anti-self adjoint operators in both
directions.

Claim 3. ϕ(iI) = iI.
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Claim 4. The result in the theorem holds.
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Abstract. In this paper, we give characterization of subclasses of an-
alytic functions, we consider Φ−like functions on the unit disc in C in
terms of Löwner chains.

1. Introduction

The class of all analytic functions was denoted by A. Functions belonging
to this class can be displayed in the form of the following power series

f(z) = z +

∞∑
n=1

anz
n. (1.1)

which are analytic in the open unit disc ∆ = {z : z ∈ C : |z| < 1}. Further,
by S. The class of univalent functions in A which normalized with the
conditions f(0) = f

′
(0)− 1 = 0 was represented by S.

Also, let S∗ denote the class of starlike functions that is defined as

S∗ =

{
f ∈ S; Re

(
zf
′
(z)

f(z)

)
> 0, z ∈ ∆

}
.
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Theorem 1.1. Let f : ∆→ C be a holomorphic function such that f(0) = 0

and f
′
(0) 6= 0. Also let α ∈ R, |α| < π

2 . Then f is spiralike of type α if and
only if

Re

(
eiα

zf
′
(z)

f(z)

)
> 0, z ∈ ∆

Definition 1.2. Let f be analytic in the unit disk ∆ of the complex plane
with f(0) = 0, f

′
(0) 6= 0. Let Φ be analytic on f(∆) with Φ = 0, ReΦ

′
(0) >

0. Then f is Phi-like(in ∆) if

Re

(
zf
′
(z)

Φ(f(z))

)
> 0, z ∈ ∆ (1.2)

Remark 1.3. The two clasical case of Definition 1.2 are given by Φ(ω) = ω(f
is starlike) and more generally, Φ(ω) = λω, Reλ > 0(f is apiral-like of type
argλ).

Definition 1.4. Let P denote the class of holomorphic functions p in ∆
such that p(0) = 1 and Re p(z) > 0, z ∈ ∆.
This class is usually called the Caratheodory class.

In the lemma and theory of Lowner chains, if f is a function which depends
holomorphically on z ∈ ∆ and is also a function of other real variables, it is
customary to write f ′(z, .) instead of ∂f

∂z (z, .).

Lemma 1.5. [1] The function f : ∆× [0,∞)→ C with f(0, t) = 0, f ′(0, t) =
et , is a Lowner chain if and only if the following conditions hold:
(i) There exist r ∈ (0, 1) and a constant M ≥ 0 such that f(., t) is holomor-
phic on ∆r for each t ≥ 0, where ∆ = {z ∈ C : |z| < r}, locally absolutely
continuous in t ≥ 0 locally uniformly with respect to z ∈ ∆r , and

|f(z, t)| ≤Met, |z| ≤ r, t ≥ 0.

(ii) There exists a function p(z, t) such that p(., t) ∈ P for each t ≥ 0, p(z, .)
is measurable on [0,∞) for each z ∈ ∆, and for all z ∈ ∆r,

∂f

∂t
(z, t) = zf ′(z, t)p(z, t), a.e. t ≥ 0.

(iii) For each t ≥ 0, f(., t) is the analytic continuation of f(., t)|∆r to ∆,
and furthermore this analytic continuation exists under the assumptions (i)
and (ii).

Lemma 1.6. Let f(z, t) be a Lowner chain. Then there exists a function
p(z, t) such that p(., t) ∈ P, t ≥ 0, p(z, t) is measurable in t ∈ [0,∞) for
each z ∈ ∆, and

∂f

∂t
(z, t) = zf ′(z, t)p(z, t), z ∈ ∆, t ≥ 0. (1.3)
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some researchers investigate on subclasses of univalent functions by using
of new methods [2, 5, 3, 4].
In this paper, we introduce new subclass of univalent functions, also we shall
obtain characterization of the subclass by using the lowner chains method.

2. Main Results

Definition 2.1. Let f be analytic in the unit disk ∆ of the complex plane
with f(0) = 0, f

′
(0) 6= 0. Let Φ be analytic on f(∆) with Φ = 0, ReΦ

′
(0) >

0. Then f is almost Φ-like function of order α(in ∆, 0 ≤ α < 1)if

Re

(
Φ(f(z))

zf ′(z))

)
> 0, z ∈ ∆ (2.1)

Theorem 2.2. Let f is Φ-like in ∆. Then f is univalent in ∆ and f(∆) is
Φ-like.

Corollary 2.3. Let f be analytic in ∆ with f(0) = 0. Then f is univalent
in ∆ if and only if f is Φ-like for some Φ.

Theorem 2.4. Let D be simply connected subset of C, so suppose f ∈ A
be a Φ-like function on ∆ with Φ

′
(0) = 1 and let f(z) ∈ D if and only if

f(z, t) = etΦ(f(z)) is a lowner chain.

Theorem 2.5. Let f ∈ A be a Φ-like function on ∆ with Φ
′
(0) = 1, ω ∈

f(∆)− 0., if and only if f(z, t) = etf(z) is a lowner chain.

Theorem 2.6. Let D be simply connected subset of C, so let f ∈ A be a
almost Φ-like function of order α on ∆ with Φ

′
(0) = 1 and let f(z) ∈ D if

and only if

g(z, t) = e
1

1−α tΦ(f(e
α
α−1

tz)), (0 ≤ α < 1, z ∈ ∆, t ≥ 0)

is a lowner chain.

References

1. I. Graham, G. Kohr, Geometric function theory in one and higher dimensions, Marcel
Dekker, New York, (2003).

2. S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity II, Folia. Sci. Univ.
Tech. Resov., 170, (1998), 65-78.

3. M. S. Robertson, On the theory of univalent functions, Ann. Math., 37, (1936), 374-408.
4. H. M. Srivastava,A. K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-

univalent functions,, Appl. Math. Lett, 23, 10, (2010) 1188-1192.
5. Q.- H. Xu, T.-S. Liu, Loewner chains and a subclass of biholomorphic mappings, J.

Math. Anal. Appl., 334, (2007), 1096–1105.

213



Oral Presentation ∗ : Speaker

STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL

EQUATIONS IN THE HILFER SENSE IN

MATRIX-VALUED MENGER SPACES

SAFOURA REZAEI ADERYANI AND REZA SAADATI∗

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran
rsaadati@iust.ac.ir

Abstract. In the present paper, we use some special functions to
present the notion of multi-stability and obtain an approximation of
fractional differential equations through a fixed point theory. Moreover,
some UH stability results for the governing models in different cases are
gained.

1. Introduction

Assume the non homogenous vector-valued fractional differential equation
given by

HDa,σΦ(λ) = θΦ(λ) + Φ(λ)θ + Ψ(λ), Φ(0) = λ0, (1.1)

in which HDa,σ is the Hilfer fractional derivative of order a and parameter
σ, and 0 < λ < ω < +∞. Assume ζn be a matrix of n2.

Consider the following cases:

(1) : θ, θ = 01×1, λ0,Φ,Ψ ∈ ζ1,
(2) : θ = 01×1, θ ∈ ζn, λ0,Φ,Ψ ∈ ζn×1,
(3) : θ = 0m×m, θ ∈ ζn, λ0,Φ,Ψ ∈ ζn×m,
(4) : θ ∈ ζm, θ ∈ ζn, λ0,Φ,Ψ ∈ ζn×m.
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In case (1), we use some special functions to study a class of matrix-valued
random controllers and also to present the notion of multi-stability. Next,
we show the equation (1.1) is the multi-stable. In other cases, via the fixed
point theory, we study the UH stability for the equation (1.1).

2. Preliminaries

Assume O = [0, 1] and

diagζn(O) =


υ1

. . .

υn

 = diag[υ1, · · · , υn], υ1, ..., υn ∈ O

 .

We denote υ := diag[υ1, · · · , υn] � β := diag[β1, · · · , βn] if υi ≤ βi for all
1 ≤ i ≤ n.

Next, we define generalized t-norm (GTN) on diagζn(O).

Definition 2.1. A GTN on diagζn(O) is an operation ~ : diagζn(O) ×
diagζn(O)→ diagζn(O) satisfying the conditions below:

(1) (∀υ ∈ diagζn(O))(υ ~ 1) = υ) (boundary condition);
(2) (∀(υ, β) ∈ (diagζn(O))2)(υ ~ β = β ~ υ) (commutativity);
(3) (∀(υ, β, γ) ∈ (diagζn(O)3)(υ~ (β~ γ) = (υ~ β)~ γ) (associativity);
(4) (∀(υ, υ′, β, β′) ∈ (diagζn(O4)(υ � υ′ and β � β′ =⇒ υ ~ β � υ′ ~ β′

(monotonicity).

For any υ, β ∈ diagζn(O) and any sequences {υk} and {βk} converging to
υ and β, if we get limk(υk~βk) = υ~β, thus ~ on diagζn(O) is continuous.

Presume Z+, the set of matrix distribution functions, including increasing
and left continuous maps ψ : R ∪ {−∞,∞} → diagζn(O) s.t. ψ0 = 0 and
ψ+∞ = 1. Now ∆+ ⊆ Z+ are all mappings ψ ∈ Z+ for which `−ψε =
limσ→ε− ψσ = 1.

In Z+, we define “ � ” as: Ψ � ψ ⇐⇒ Ψε � ψε, ∀ε ∈ R. In addition

∇jr =

{
0, if r ≤ j,
1, if r > j

belongs to Z+ and for each matrix distribution function ψ, ψ � ∇0.

Definition 2.2. Assume ~ be a continuous GTN, J be a linear space, and
ψ : J → ∆+ be a matrix distribution function. The triple (J , ψ,~) is called
a matrix Menger normed space if we get

(1) ψjε = ∇0
ε for all ε > 0 if and only if j = 0;

(2) ψνjε = ψjε
|ν|

for any s ∈ J and ν ∈ C with ν 6= 0;

(3) ψj+j
′

ε+ε′ � ψ
j
ε ~ ψj

′

ε′ for any j, j′ ∈ J and ε, ε′ ≥ 0.

A complete matrix Menger normed space is called a matrix Menger Ba-
nach space.

For more details, we refer to [1, 2, 3].
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3. Multi-stability for (1.1), when θ, θ = 01×1, λ0,Φ,Ψ ∈ ζ1,1,

Assume the following random controller given by

Λ

(
− |λ|

a

Θε

)
= diag

[
0H0

(
− |λ|

a

Θε

)
, 0H1[e1;−|λ|

a

Θε
], 2H1[d1, d2; e1;−|λ|

a

Θε
], (3.1)

1H1[d1; e1;−|λ|
a

Θε
], sHr

[
− |λ|

a

Θε

∣∣∣∣(d1,D1),...,(ds,Ds)
(e1,E1),...,(er,Er)

]
, vsHw

r

[
− |λ|

a

Θε

∣∣∣∣(dj ,Dj)1,s(ej ,Ej)1,r

]]
where Θ > 0, ε ∈ (0,∞), 0 < a < 1, and 0H0, 0H1, 1H1, sHr,

v
sHw

r are Expo-
nential function, Mittag–Leffler function, Hypergeometric function, Wright
function, Fox–Wright function, and Fox’s H–function respectively. for more
details see [4].

Notice that the Fox’s H-function is defined by

v
sHw

r

[
X

∣∣∣∣(dj ,Dj)1,s(ej ,Ej)1,r

]
:=

1

2πi

∫
Z
O(Y )XY dY, (3.2)

where i2 = −1, X ∈ C\{0}, XY = exp(Y [log|X|+iarg(X)]), log|X| denotes
the natural logarithm of |X| and arg(X) is not necessarily the principal
value. For convenience,

O(Y ) :=

∏v
j=1 Γ(ej − EjY )

∏w
j=1 Γ(1− dj +DjY )∏r

j=v+1 Γ(1− ej + EjY )
∏s
j=w+1 Γ(dj −DjY )

,

where an empty product is interpreted as 1, and the integers v, w, s, r satisfy
the inequalities 0 ≤ w ≤ s and 1 ≤ v ≤ r. Assume the coefficients

Dj > 0 (j = 1, . . . , s) and Ej > 0 (j = 1, . . . , r),

and the complex parameters

dj (j = 1, . . . , s) and ej (j = 1, . . . , r)

are constrained such that no poles of integrand in (3.2) coincide, and Z is a
suitable contour of the Mellin-Barnes type (in the complex Y -plane) which
separates the poles of one product from the others. Further, if we assume

` :=
w∑
j=1

Dj −
s∑

j=w+1

Dj +
v∑
j=1

Ej −
r∑

j=Q+1

Ej > 0,

then the integral in (3.2) converges absolutely and defines the H-function,

which is analytic in the sector: | arg(X)| < 1

2
`π and with the point X =

0 being tacitly excluded. Actually, the H–function makes sense and also
defines an analytic function of X when either

E :=

s∑
j=1

Dj −
r∑
j=1

Ej < 0 and 0 < |X| <∞,

or

E = 0 and 0 < |X| < R :=
s∏
j=1

D
−Dj
j

r∏
j=1

E
Ej
j .
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Definition 3.1. Equation (1.1) has Multi-stability, with respect to Λ(− |λ|
a

Θε ),
if there is ~ > 0, s.t for all Θ > 0, and all solution Φ to (3.3), there is a

solution Φ′ to (1.1), with ψΦ−Φ′
ε � Λ

(
− |λ|

a

~Θε

)
, where ε ∈ (0,∞).

Theorem 3.2. Let (1.1), when θ, θ = 01×1, λ0,Φ,Ψ ∈ ζ1,1, also Let

ψ
HDσ,δΦ(λ)−Ψ(λ)
ε � Λ

(
− |λ|

a

Θε

)
. (3.3)

Then (1.1) is Multi-stable, with respect to Λ(− |λ|
a

Θε ).

4. UH stability for (1.1), when θ = 01×1, θ ∈ ζn, λ0,Φ,Ψ ∈ ζn,1,

Theorem 4.1. If each the eigenvalues of θ satisfy | arg(µ(θ))| > aπ

2
. Then,

(1.1) is UH stable.

5. UH stability for (1.1), when θ = 0m×m, θ ∈ ζn, λ0,Φ,Ψ ∈ ζn,m

Theorem 5.1. If any the eigenvalues of θ satisfy | arg(µ(θ))| > aπ

2
. Then,

(1.1) is UH stable.

6. UH stability for (1.1), when θ ∈ ζm, θ ∈ ζn, λ0,Φ,Ψ ∈ ζn,m

Theorem 6.1. Assume all the eigenvalues of θ and θ satisfy

| arg(µ(θ))| > aπ

2
, π ≥ | arg(µ(θ))| ≥ k (

aπ

2
< k < min{π, πa}).

then (1.1) is UH stable.
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Abstract. In this talk we review the early development of Hahn-Banach
theorem before Banach gave the final form of this theorem.

1. Introduction

One of the most important results in Functional analysis is the Hahn-
Banach theorem and its consequences. Before Banach, some of mathemati-
cians had obtained the result for some of special classical spaces such as Lp

and C[a, b]. In this talk we review their efforts. In translation and rewriting
their theorems, I tried to be close to their notations.

2. Schmidt and the first steps

The idea of generalizing finite dimensional euclidean spaces to spaces with
infinite dimension was noticed at the beginning of the 20th century. Inspired
by Hilbert’s works, Schmidt in 1908 made the first systematic study of se-
quence space `2 [5]. In that paper Schmidt considered numerical sequences
whose sum of squares of the absolute value of their terms is finite. Next
he defined inner product (without conjugate on the second component and
so to obtain the inner product he used (A,B)), norm and orthogonality
as usual and deduced Bessel’s equation. Next he introduced convergence
in norm (which he named strong convergence: Starken convergenz ) and
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GramSchmidt process. After these preliminary steps in chapter 2 he consid-
ered the system of linear equations with infinite unknowns. After studying
homogenous equations, he considered nonhomogenous system of equations
(An, Z) = cn where for each n, An ∈ `2 and cn ∈ C and An’s are indepen-
dent. By Gram-Schmidt process, he transformed An to orthonormal Bn and
the system of equations is transformed to (Bn, Z) = gn and by application
of Bessel’s equation he proved the following:

Theorem 2.1. The necessary and sufficient condition for the solvability of
the equation is the convergence of the series

∑
|gn|2, in other words gn ∈ `2.

In fact, The above problem is related to extension of a functional, be-
cause since `2

∗
= `2, hence solvability of the above equation is equivalent to

existence of Z ∈ `2, such that Z(An) = cn. But Schmidt did not go further
and the next step was taken by Riesz.

3. Riesz and Helly

In 1909, Riesz introduced the spaces Lp[a, b][3] and obtained most of the
classical results about these spaces. But the most relevant result to Hahn-
Banach theorem that was proved in this paper was:

Theorem 3.1. A finite or countably infinite system of linear integral equa-
tions ∫ b

a
fi(x)ξ(x)dx = ci, (i = 1, 2, ...)

whose coefficient functions fi(x) belong to L
p

p−1 , has a solution ξ with con-
dition ∫ b

a
|ξ(x)|pdx ≤Mp

if and only if for each n and each complex numbers µi,

|
n∑

i=1

µici|
p

p−1 ≤M
1

p−1

∫ b

a
|

n∑
i=1

µifi(x)|
p

p−1dx.

This theorem is the first form of Hahn-Banach theorem in special case
X = Lp[a, b] and X∗ = Lq[a, b] where q = p

p−1 is the conjugate of p.

In 1911, Riesz proved a similar result for C[a, b] [4].

Theorem 3.2. The system of linear integral equations∫ b

a
fk(x)dα(x) = ck, (k = 1, 2, ...)

has a solution α if and only if there exists a number M such that for any µk

|
n∑

k=1

µkck| ≤M ×Max|
n∑

k=1

µkfk(x)|.

Total variation of the solution α is less than or equal with M .
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In 1912 Helly reproved some results of Riesz about C[a, b] [2], specially
the above theorem but with a different approach. To obtain the above
theorem, Helly first proved a lemma that is similar to modern proof of the
Hahn-Banach theorem:

Theorem 3.3. If for any µi’s, the inequality

|
n∑

i=1

µiγi| ≤M |
n∑

i=1

µigi(x)|

holds where for i = 1, ..n, γi’s are fixed real numbers and gi ∈ C[a, b], then
for each gn+1 ∈ C[a, b], there exists γn+1 such that for any choice of µi’s,
we have

|
n+1∑
i=1

µiγi| ≤M |
n+1∑
i=1

µigi(x)|.

4. Hahn

At last in 1927, Hans Hahn gave the final form of the theorem for real
complete normed spaces [1]. But he used norm instead of sublinear func-
tional. In his notation, a linear functional f on a normed space < with norm
D has slope M , if for each x ∈ <,

|f(x)| ≤MD(x).

Theorem 4.1. Let <0 be a complete linear subspace of < and f0(x) a linear
functional on <0 of slope M . Then there is a linear functional f(x) on < of
slope M which coincides with f0(x) on <0.
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Abstract. A real mapping Mω
f (t) is introduced, a generalized form of

Fejér’s inequality is obtained and some new and generalized inequalities
in connection with fractional integrals and monotone functions are given.

1. Introduction and Preliminaries

Lipót Fejér (1880-1959) in 1906 [4], while studying trigonometric poly-
nomials, discovered the following integral inequalities which later became
known as Fejér’s inequality (in some references is separated to the left and
right):

F
(a+ b

2

)∫ b

a
G(x)dx ≤

∫ b

a
F(x)G(x)dx ≤ F(a) + F(b)

2

∫ b

a
G(x)dx, (1.1)

where F is a convex function ([9]) in the interval (a, b) and G is a positive
function in the same interval such that

G(a+ t) = G(b− t), 0 ≤ t ≤ a+ b

2
,

i.e., y = G(x) is a symmetric curve with respect to the straight line which
contains the point (a+b

2 , 0) and is normal to the x-axis. In fact the Fejér’s
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inequality (1.1), is the weighted version of celebrated Hermite-Hadamard’s
inequality for convex function f : [a, b]→ R:

F
(a+ b

2

)
≤ 1

b− a

∫ b

a
F(x)dx ≤ F(a) + F(b)

2
. (1.2)

Our aim in this paper is obtaining a generalized form of Fejér’s inequality and
applying it to give some new and generalized inequalities in connection with
fractional integrals and monotone functions. We introduce a real mapping
Mω

f (t) and obtain some basic properties for it. Also we use the concept of

h-convexity introduced by S. Varošanec in 2006 ([13]):

Definition 1.1. We say that a non-negative function f : I ⊆ R → R is h-
convex or f ∈ SX(h, I), if for non-negative function h : (0, 1) ⊆ J ⊆ R→ R
(h 6≡ 0), all x, y ∈ I and α ∈ (0, 1) we have

F(αx+ (1− α)y) ≤ h(α)F(x) + h(1− α)F(y).

f is said to be h-concave or f ∈ SV (h, I), If above inequality is reversed.

The mapping Mω
f (t). For two real numbers a < b, consider integrable

functions f : [a, b] → R and ω : [a, b] → R+ ∪ {0}. Define a mapping
Mω

f (t) : [0, 1]→ R as

Mω
f (t) =

∫ mt(L,R)

a
f(x)ω(x)dx+

∫ b

Mt(L,R)
f(x)ω(x)dx,

such that

mt(L,R) = min{L(t),R(t)},Mt(L,R) = max{L(t),R(t)}

where L(t) : [0, 1] → [a, b] and R(t) : [0, 1] → [a, b] are considered as the
following:

L(t) = tb+ (1− t)a,R(t) = ta+ (1− t)b

for any t ∈ [0, 1]. Note that

M1
f (t) =

∫ mt(L,R)

a
f(x)dx+

∫ b

Mt(L,R)
f(x)dx,

where by 1, we mean ω ≡ 1.

2. Generalization and refinement of Fejér’s Inequality

The following result presents a new and generalized type of the celebrated
Fejér’s inequality in connection with h-convex functions.

Theorem 2.1. Consider two integrable functions f : [a, b] → R and w :
[a, b] → R+ ∪ {0} such that f is h-convex and ω is symmetric with respect
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to a+b
2 . For all t ∈ [0, 1], the following inequality hold:

1

2h(1
2)
f
(a+ b

2

)∫ Mt(L,R)

mt(L,R)
ω(x)dx ≤

∫ b

a
f(x)ω(x)dx−Mω

f (t) (2.1)

≤ |R(t)− L(t)|[f ◦ L](t) + [f ◦ R](t)

(L(t)−R(t))

∫ L(t)

R(t)
h

(
x−R(t)

L(t)−R(t)

)
ω(x)dx

=
|R(t)− L(t)|

(
[f ◦ L](t) + [f ◦ R](t)]

)
(R(t)− L(t))

∫ R(t)

L(t)
h

(
x− L(t)

R(t)− L(t)

)
ω(x)dx.

Inequality (2.1) is a generalization of many Fejér’s type inequalities ob-
tained for h-convex functions in literature. However if we set h(s) = s in
(2.1), then the following inequality holds:

f
(a+ b

2

)∫ Mt(L,R)

mt(L,R)
ω(x)dx ≤

∫ b

a
f(x)ω(x)dx−Mω

f (t) (2.2)

≤ [f ◦ L](t) + [f ◦ R](t)

|R(t)− L(t)|

∫ R(t)

L(t)
(x− L(t))ω(x)dx

=
[f ◦ L](t) + [f ◦ R](t)

|L(t)−R(t)|

∫ L(t)

R(t)
(x−R(t))ω(x)dx,

Inequality (2.2) is a new generalized Fejér’s type inequality related to the
convex functions.

3. Fractional Integrals

In this section, we introduce a new class of fractional integrals and just
consider one special case which is known in literature as Riemann-Liouville
fractional integrals (see [5, 7, 8, 10]) to find some hermite-hadamard’s type
inequalities for it by using generalized Fejér inequality obtained in previous
section.
For t ∈ [0, 1] \ {1

2} consider a bifunction
G : [mt(L,R),Mt(L,R)]× [mt(L,R),Mt(L,R)]→ R+ ∪ {0} and define the
following class of fractional integrals:

Fmt(L,R)+ [f ](x) =

∫ x

mt(L,R)
G(x, u)f(u)du, x > mt(L,R)

and

FMt(L,R)− [f ](x) =

∫ Mt(L,R)

x
G(x, u)f(u)du, x < Mt(L,R)

if above integrals exist.
Now we discuss a special case of Fmt(L,R)+ [f ](x) and FMt(L,R)− [f ](x) and

obtain some results in connection with Theorem 2.1.
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In Fmt(L,R)+ [f ](x) and FMt(L,R)− [f ](x) for α > 0, consider

G(x, u) =
1

Γ(α)
|x− u|α−1, x, u ∈ [mt(L,R),Mt(L,R)].

So we achieve the following generalized Riemann-Liouville fractional inte-
grals:

J α
mt(L,R)+

f(x) =
1

Γ(α)

∫ x

mt(L,R)
(x− u)α−1f(u)du x > mt(L,R)

and

J α
Mt(L,R)−

f(x) =
1

Γ(α)

∫ Mt(L,R)

x
(u− x)α−1f(u)dt Mt(L,R) < x.

Fractional integrals J α
mt(L,R)+

f(x) and J α
Mt(L,R)−

f(x) in special case (t =

0, 1) reduce to Jαa+f(x) and Jαb−f(x) respectively, which are known as Riemann-
Liouville fractional integrals. Now in Theorem 2.1, consider

ω(x) =
(Mt(L,R)− x)α−1 + (x−mt(L,R))α−1

Γ(α)
, x ∈ [mt(L,R),Mt(L,R)].

Then:

1

h(1
2)
f
(a+ b

2

)
≤ Γ(α+ 1)

(b− a)α|1− 2t|α
[J α
mt(L,R)+

[f ](Mt(L,R)) + J α
Mt(L,R)−

[f ](mt(L,R))]

(3.1)

≤ α[f ◦ L(t) + f ◦ R(t)]

∫ 1

0
H(s)sα−1ds,

for t ∈ [0, 1] \ {1
2}.

In the case that h(s) = s, from (3.1) we reach the following inequality
which is generalization of inequality (2.1) obtained in [12]:

f
(a+ b

2

)
≤ Γ(α+ 1)

2(b− a)α|1− 2t|α
[J α
mt(L,R)+

[f ](Mt(L,R)) + J α
Mt(L,R)−

[f ](mt(L,R))]

≤ f ◦ L(t) + f ◦ R(t)

2
.

4. Refinements for Hermite-Hadamard’s Inequality by
Monotone Functions

In this section, we obtain some refinements for Hermite-Hadamard’s in-
equality by the use of fractional integrals discussed in previous section pro-
vided that considered functions are nonnegative and monotone. We focus
on Riemann-Liouville fractional integrals but results can be extended to
many classes of fractional integrals. We need the following result which is a
consequence of Theorem 1 in [1](see also [3, 6]).
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Theorem 4.1. If f1 and f2 are nonnegative increasing functions on [0, 1],
Then ∫ 1

0
f1(x)dx

∫ 1

0
f2(x)dx ≤

∫ 1

0
f1(x)f2(x)dx.

Here we give some refinements for Hermite-Hadamard’s inequality by the
use of fractional integrals for h-convex functions:

Theorem 4.2. Suppose that f : [a, b]→ R is an integrable h-convex function
and t ∈ [0, 1] \ {1

2}. Then
(i) For α ≥ 1, the following inequality holds if f is nonnegative and increasing
:

1

2h(1
2)
f
(a+ b

2

)
≤ 1

|1− 2t|(b− a)

∫ Mt(L,R)

mt(L,R)
f(u)du (4.1)

≤ Γ(α+ 1)

2|1− 2t|α(b− a)α

[
J α
mt(L,R)+

[f ](Mt(L,R)) + J α
Mt(L,R)−

[f ](mt(L,R))

]
≤ α

[f ◦ L(t) + f ◦ R(t)

2

] ∫ 1

0
H(s)sα−1ds.
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Abstract. Some new and generalized results related to the Euler’s beta
and gamma functions are presented by the use of generalized Fejér’s
Inequality.

1. Introduction and Preliminaries

Lipót Fejér (1880-1959) in 1906 [4], while studying trigonometric poly-
nomials, discovered the following integral inequalities which later became
known as Fejér’s inequality (in some references is separated to the left and
right):

F
(a+ b

2

)∫ b

a
G(x)dx ≤

∫ b

a
F(x)G(x)dx ≤ F(a) + F(b)

2

∫ b

a
G(x)dx, (1.1)

where F is a convex function ([6]) in the interval (a, b) and G is a positive
function in the same interval such that

G(a+ t) = G(b− t), 0 ≤ t ≤ a+ b

2
,

i.e., y = G(x) is a symmetric curve with respect to the straight line which
contains the point (a+b

2 , 0) and is normal to the x-axis. In fact the Fejér’s
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inequality (1.1), is the weighted version of celebrated Hermite-Hadamard’s
inequality for convex function f : [a, b]→ R:

F
(a+ b

2

)
≤ 1

b− a

∫ b

a
F(x)dx ≤ F(a) + F(b)

2
. (1.2)

In this paper some new and generalized results related to the Euler’s beta
and gamma functions are presented by the use of generalized Fejér’s Inequal-
ity. Also we use the concept of h-convexity introduced by S. Varošanec in
2006 ([9]):

Definition 1.1. We say that a non-negative function f : I ⊆ R → R is h-
convex or f ∈ SX(h, I), if for non-negative function h : (0, 1) ⊆ J ⊆ R→ R
(h 6≡ 0), all x, y ∈ I and α ∈ (0, 1) we have

F(αx+ (1− α)y) ≤ h(α)F(x) + h(1− α)F(y).

f is said to be h-concave or f ∈ SV (h, I), If above inequality is reversed.

The following result presents a new and generalized type of the celebrated
Fejér’s inequality in connection with h-convex functions.

Theorem 1.2. Consider two integrable functions f : [a, b] → R and w :
[a, b] → R+ ∪ {0} such that f is h-convex and ω is symmetric with respect
to a+b

2 . For all t ∈ [0, 1], the following inequality hold:

1

2h(1
2)
f
(a+ b

2

)∫ Mt(L,R)

mt(L,R)
ω(x)dx ≤

∫ Mt(L,R)

mt(L,R)
f(x)ω(x)dx (1.3)

≤ |R(t)− L(t)|[f ◦ L](t) + [f ◦ R](t)

(L(t)−R(t))

∫ L(t)

R(t)
h

(
x−R(t)

L(t)−R(t)

)
ω(x)dx

=
|R(t)− L(t)|

(
[f ◦ L](t) + [f ◦ R](t)]

)
(R(t)− L(t))

∫ R(t)

L(t)
h

(
x− L(t)

R(t)− L(t)

)
ω(x)dx,

where

mt(L,R) = min{L(t),R(t)},Mt(L,R) = max{L(t),R(t)}

and L(t) : [0, 1]→ [a, b], R(t) : [0, 1]→ [a, b] are considered as the following:

L(t) = tb+ (1− t)a,R(t) = ta+ (1− t)b

for any t ∈ [0, 1].

Inequality (1.3) is a generalization of many Fejér’s type inequalities ob-
tained for h-convex functions in literature. However if we set h(s) = s in
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(1.3), then the following inequality holds:

f
(a+ b

2

)∫ Mt(L,R)

mt(L,R)
ω(x)dx ≤

∫ Mt(L,R)

mt(L,R)
f(x)ω(x)dx (1.4)

≤ [f ◦ L](t) + [f ◦ R](t)

|R(t)− L(t)|

∫ R(t)

L(t)
(x− L(t))ω(x)dx

=
[f ◦ L](t) + [f ◦ R](t)

|L(t)−R(t)|

∫ L(t)

R(t)
(x−R(t))ω(x)dx,

2. Gamma and Beta Function

In this section, we present some inequalities and results related to gamma
and beta functions. Specially by considering appropriate functions in Theo-
rem 1.2 along with some calculations, we give a simple proof for well known
Stirling’s formula as well.
The Euler’s integral of the second kind i.e. Gamma function [2] is defined as:

Γ(x) =

∫ ∞
0

tx−1e−tdt Re(x) > 0.

Consider the function f(x) = ln Γ(x), x ∈ (0,+∞) which is convex (Γ(x) is
log-convex). Now in Theorem 1.2, consider h(s) = s, t = 0, 1, b = a+ 1 for
a ∈ (0,+∞) and symmetric function ω : [a, a + 1] → (0,+∞) with respect
to a+ 1

2 . Then we obtain the following inequality:

Γ(a+
1

2
) ≤ exp

( 1

K

∫ a+1

a
ω(x) ln Γ(x)dx

)
≤
√

Γ(a)Γ(a+ 1), (2.1)

where K =
∫ a+1
a ω(x)dx. In special case for ω ≡ 1, by the Raabe’s formula

[5], i.e. ∫ a+1

a
ln Γ(x)dx = ln

√
2π + a ln(a)− a,

and inequality (2.1) we have

Γ(a+
1

2
) ≤
√

2π
(a
e

)a ≤√Γ(a)Γ(a+ 1), (2.2)

for any a ∈ (0,+∞). By applying Wendel’s inequality ([10]), i.e.(
a

a+ s

)1−s
≤ Γ(a+ s)

asΓ(a)
≤ 1,

in (2.2) for s = 1
2 , we get to

√
a

a+ 1
2

≤
Γ(a+

1

2
)

a
1
2 Γ(a)

≤

√
2πa

(a
e

)r
Γ(a+ 1)

≤ 1. (2.3)
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So two results can be extracted from inequality (2.3) by using squeeze the-
orem [7]. The First is

lim
a→∞

Γ(a+ 1
2)

a
1
2 Γ(a)

= 1,

and the second is generalization of Stirling’s formula [3],

Γ(a+ 1) ≈
√

2πa
(a
e

)a
as a→∞.

For the case that a ∈ N, we recapture the classic Stirling’s formula:

a! ≈
√

2πa
(a
e

)a
as a→∞.

The Euler’s integral of the first kind is known as beta function [1]:

β(x, y) =

∫ 1

0
tx−1(1− t)y−1dt, Re(x) > 0, Re(y) > 0.

To obtain some results in connection with beta function by the use of Fejér’s
inequality consider

f(x) =
(
x−mt(L,R)

)r
, 0 < mt(L,R) ≤ x ≤Mt(L,R), r ∈ [1,∞);

ω(x) =

(
Mt(L,R)− x

)P−1(
x−mt(L,R)

)P−1

(Mt(L,R)−mt(L,R))p
, 0 < mt(L,R) ≤ x ≤Mt(L,R);

h(s) = sk, 0 ≤ k ≤ 1, s > 0,

where 0 < a < b, p > 0 and t ∈ [0, 1]\{1
2}. It follows with some calculations

and Theorem 1.2 that

1

2(1
2)k

.

(
Mt(L,R)−mt(L,R)

)r
2r

(
Mt(L,R)−mt(L,R)

)p−1
β(p, p)

≤
(
Mt(L,R)−mt(L,R)

)p+r−1
β(p, p+ r)

≤
(
Mt(L,R)−mt(L,R)

)r+1(
Mt(L,R)−mt(L,R)

)p−2
β(k + p, p),

which implies the following inequalities related to beta function:

2k−r−1β(p, p) ≤ tβ(p, p+ r) + (1− t)2k−r−1β(p, p) ≤ β(p, p+ r) ≤ β(k + p, p),
(2.4)

for t ∈ [0, 1] \ {1
2}, 0 ≤ k ≤ 1 and r ∈ [1,∞).

Remark 2.1. For the case that f(x) =
(
Mt(L,R) − x

)r
, with the same

argument as above we recapture (2.4) because of the fact β(p, p + r) =
β(p+ r, p).

In special case if we set k = 1 and t = 0, 1, we get

1

2r
β(p, p) ≤ β(p+ r, p) ≤ β(1 + p, p) =

1

2
β(p, p), (2.5)
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for p > 0 and r ∈ [1,∞). From (2.5) and the characterization B(x, y) =
Γ(x)Γ(y)
Γ(x+y) we obtain that

1

2r
≤ Γ(2p)Γ(p+ r)

Γ(p)Γ(2p+ r)
≤ 1

2
,

for p > 0 and r ∈ [1,∞). In more special case for any p > 0, we have the
following result:

1

2
Γ(p)Γ(2p+ 1) = Γ(2p)Γ(p+ 1).
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Abstract. This article is concerned with a nonsmooth/nonconvex com-
posite multiobjective optimization problem involving uncertain constraints
in arbitrary Asplund spaces. We first establish necessary optimality con-
ditions for weakly robust efficient solutions of the problem in terms of
the limiting subdifferential. Then, sufficient conditions for the existence
of (weakly) robust efficient solutions to such a problem are driven under
the new concept of pseudo-quasi convexity for composite functions.

1. Introduction

Robust optimization approach considers the cases in which optimization
problems often deal with uncertain data due to prediction errors, lack of
information, fluctuations, or disturbances. Particularly, in most cases these
problems depend on conflicting goals due to multiobjective decision mak-
ers which have different optimization criteria. So, the robust multiobjective
optimization is highly interesting in optimization theory and important in
applications. To the best of our knowledge, the most powerful results in
this direction were established for finite-dimensional problems not dealing
with composite functions. So, an infinite-dimensional framework would be
proper to study when involving optimality and duality in composite opti-
mization. From this, our main purpose in this paper is to investigate a
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nonsmooth/nonconvex multiobjective optimization problem with composi-
tion fields over arbitrary Asplund spaces.

Throughout this paper, we use standard notation of variational analysis;
see, for example, [1]. Unless otherwise stated, all the spaces under consider-
ation are Asplund with the norm ‖·‖ and the canonical pairing 〈· , ·〉 between
the space X in question and its dual X∗ equipped with the weak∗ topology
w∗. For a given nonempty set Ω ⊂ X, the symbols coΩ, clΩ, and intΩ
indicate the convex hull, topological closure, and topological interior of Ω,
respectively, while cl∗Ω stands for the weak∗ topological closure of Ω ⊂ X∗.
The dual cone of Ω is the set

Ω+ := {x∗ ∈ X∗ | 〈x∗, x〉 ≥ 0, ∀x ∈ Ω}.

Besides, Rn
+ signifies the nonnegative orthant of Rn for n ∈ N := {1, 2, . . . }.

Suppose that F : X → W and f : W → Y be vector-valued functions be-
tween Asplund spaces, and that K ⊂ Y be a pointed (i.e., K

⋂
(−K) = {0})

closed convex cone. We consider a composite multiobjective optimization
problem:

(CP) minK (f ◦ F )(x)

s.t. (gi ◦Gi)(x) ≤ 0, i = 1, 2, . . . , n,

where the functions G = (G1, G2, . . . , Gn) : X → Z and g = (g1, g2, . . . , gn) :
Z → Rn define the constraints on Asplund spaces. This problem in the face
of data uncertainty in the constraints can be captured by the following
composite uncertain multiobjective optimization problem:

(CUP) minK (f ◦ F )(x)

s.t. (gi ◦Gi)(x, vi) ≤ 0, i = 1, 2, . . . , n,

where x ∈ X is the vector of decision variable, vi’s are uncertain parameters
and vi ∈ Vi for some sequentially compact topological space Vi, V :=

n∏
i=1

Vi,

and Gi : X × Vi → Z × Ui and gi : Z × Ui → R, i = 1, 2, . . . , n, are given
functions for topological spaces Ui, U :=

n∏
i=1

Ui.

For investigating the problem (CUP), we associate with it the so-called
robust counterpart:

(CRP) minK (f ◦ F )(x)

s.t. (gi ◦Gi)(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2, . . . , n.

A vector x ∈ X is called a robust feasible solution of problem (CUP) if
it is a feasible solution of problem (CRP). The feasible set C of problem
(CRP) is defined by

C := {x ∈ X | (gi ◦Gi)(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, 2, . . . , n}.

Definition 1.1. (i) We say that a vector x̄ ∈ X is a robust efficient
solution of problem (CUP), denoted by x̄ ∈ S(CRP), if x̄ is an

232



INTEGRAL MEANS

efficient solution of problem (CRP), i.e., x̄ ∈ C and
(f ◦ F )(x)− (f ◦ F )(x̄) /∈ −K \ {0}, ∀x ∈ C.

(ii) A vector x̄ ∈ X is called a weakly robust efficient solution of problem
(CUP), denoted by x̄ ∈ Sw(CRP), if x̄ is a weakly efficient solution
of problem (CRP), i.e., x̄ ∈ C and

(f ◦ F )(x)− (f ◦ F )(x̄) /∈ −intK, ∀x ∈ C.

Motivated by the concept of pseudo-quasi generalized convexity in [4], we
introduce a similar concept of pseudo-quasi convexity type for the composi-
tions f ◦F and g◦G to establish sufficient optimality conditions for (weakly)
robust efficient solutions of problem (CUP).
Definition 1.2. (i) We say that (f ◦ F, g ◦ G) is type I pseudo convex

at x̄ ∈ X if for any x ∈ X, y∗ ∈ K+, w∗ ∈ ∂〈y∗, f〉(F (x̄)), x∗ ∈
∂〈w∗, F 〉(x̄), v∗i ∈ ∂xgi(Gi(x̄, vi)), and x∗i ∈ ∂x〈v∗i , Gi〉(x̄, vi), vi ∈
Vi(x̄), i = 1, 2, . . . , n, there exists ν ∈ X such that
〈y∗, f ◦ F 〉(x) < 〈y∗, f ◦ F 〉(x̄) =⇒ 〈x∗, ν〉 < 0,

(gi ◦Gi)(x, vi) ≤ (gi ◦Gi)(x̄, vi) =⇒ 〈x∗i , ν〉 ≤ 0, i = 1, 2, . . . , n.

(ii) We say that (f ◦F, g ◦G) is type II pseudo convex at x̄ ∈ X if for any
x ∈ X \ {x̄}, y∗ ∈ K+ \ {0}, w∗ ∈ ∂〈y∗, f〉(F (x̄)), x∗ ∈ ∂〈w∗, F 〉(x̄),
v∗i ∈ ∂xgi(Gi(x̄, vi)), and x∗i ∈ ∂x〈v∗i , Gi〉(x̄, vi), vi ∈ Vi(x̄), i =
1, 2, . . . , n, there exists ν ∈ X such that
〈y∗, f ◦ F 〉(x) ≤ 〈y∗, f ◦ F 〉(x̄) =⇒ 〈x∗, ν〉 < 0,

(gi ◦Gi)(x, vi) ≤ (gi ◦Gi)(x̄, vi) =⇒ 〈x∗i , ν〉 ≤ 0, i = 1, 2, . . . , n.

Let Ω ⊂ X be locally closed around x̄ ∈ Ω, i.e., there is a neighborhood
U of x̄ for which Ω

⋂
clU is closed. The Fréchet normal cone N̂(x̄; Ω) and

the Mordukhovich normal cone N(x̄; Ω) to Ω at x̄ ∈ Ω are defined by

N̂(x̄; Ω) := {x∗ ∈ X∗ | lim sup
x→x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ 0},

N(x̄; Ω) := Lim sup
x→x̄

N̂(x; Ω),

where x
Ω→ x̄ stands for x → x̄ with x ∈ Ω. If x̄ /∈ Ω, we put N̂(x̄; Ω) =

N(x̄; Ω) := ∅.
For an extended real-valued function ϕ : X → R, the limiting/Mordukhovich

subdifferential and the regular/Fréchet subdifferential of ϕ at x̄ ∈ domϕ are
given, respectively, by

∂ϕ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N((x̄, ϕ(x)); epiϕ)}
and

∂̂ϕ(x̄) := {x∗ ∈ X∗ | (x∗,−1) ∈ N̂((x̄, ϕ(x)); epiϕ)}.
If |ϕ(x̄)| = ∞, then one puts ∂ϕ(x̄) = ∂̂ϕ(x̄) := ∅.

Throughout this paper, we assume that the following assumptions hold:
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Assumption 1.3. (See [2, p.131])
(A1) For a fixed x̄ ∈ X, F is locally Lipschitz at x̄ and f is locally Lipschitz

at F (x̄).
(A2) For each i = 1, 2, . . . , n, Gi is locally Lipschitz at x̄ and uniformly

on Vi, and gi is Lipschitz continuous on Gi(x̄,Vi).
(A3) For each i = 1, 2, . . . , n, the functions vi ∈ Vi 7→ Gi(x̄, vi) ∈ Z × Ui

and Gi(x̄, vi) 7→ gi(Gi(x̄, vi)) ∈ R are locally Lipschitzian.
(A4) For each i = 1, 2, . . . , n, we define real-valued functions ϕi and ϕ on

X via
ϕi(x) := max

vi∈Vi

(gi ◦Gi)(x, vi) and ϕ(x) := max
i∈{1,2,...,n}

ϕi(x),

and we notice that above assumptions imply that ϕi is well defined
on Vi. In addition, ϕi and ϕ follow readily that are locally Lipschitz
at x̄, since each (gi ◦Gi)(x̄, vi) is (see [2, (H1), p.131] and [3, p.290]).

(A5) For each i = 1, 2, . . . , n, the multifunction (x, vi) ∈ X×Vi
−→→ ∂x(gi ◦

Gi)(x, vi) ⊂ X∗ is weak∗ closed at (x̄, v̄i) for each v̄i ∈ Vi(x̄), where
Vi(x̄) = {vi ∈ Vi | (gi ◦Gi)(x̄, vi) = ϕi(x̄)}.

In the rest of this section, we present a suitable constraint qualification
in the sense of robustness, which is needed to get a so-called robust Karush-
Kuhn-Tucker (KKT) condition.
Definition 1.4. (See [4, Definition 2.3]) Let x̄ ∈ C. We say that the
constraint qualification (CQ) condition is satisfied at x̄ if

0 /∈ cl∗co(∪{∪v∗i ∈∂xgi(Gi(x̄,vi))∂x〈v
∗
i , Gi〉(x̄, vi) | vi ∈ Vi(x̄)}), i ∈ I(x̄),

where I(x̄) := {i ∈ {1, 2, . . . , n} | ϕi(x̄) = ϕ(x̄)}.
It is worth to mention here that this condition (CQ) is reduced to the

extended Mangasarian-Fromovitz constraint qualification (EMFCQ) in the
smooth setting; see e.g., [1] for more details.
Definition 1.5. A point x̄ ∈ C is said to satisfy the robust (KKT) condition
if there exist y∗ ∈ K+ \ {0}, µ := (µ1, µ2, . . . , µn) ∈ Rn

+, and v̄i ∈ Vi,
i = 1, 2, . . . , n, such that

0 ∈ ∪w∗∈∂⟨y∗,f⟩(F (x̄))∂〈w∗, F 〉(x̄) +
n∑

i=1

µi cl
∗co(∪{∪v∗i ∈∂xgi(Gi(x̄,vi))∂x〈v

∗
i , Gi〉(x̄, vi)

| vi ∈ Vi(x̄)}),
µi max

vi∈Vi

(gi ◦Gi)(x̄, vi) = µi (gi ◦Gi)(x̄, v̄i) = 0, i = 1, 2, . . . , n.

Therefore, the robust (KKT) condition defined above is guaranteed by
the constraint qualification (CQ).

2. Robust necessary and sufficient optimality conditions

The first theorem establishes a necessary optimality condition in the sense
of the limiting subdifferential for weakly robust efficient solutions of problem
(CUP).
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Theorem 2.1. Suppose that x̄ ∈ Sw(CRP). Then there exist y∗ ∈ K+,
µ := (µ1, µ2, . . . , µn) ∈ Rn

+, with ‖y∗‖+‖µ‖ = 1, and v̄i ∈ Vi, i = 1, 2, . . . , n,
such that

0 ∈ ∪w∗∈∂⟨y∗,f⟩(F (x̄))∂〈w∗, F 〉(x̄) +
n∑

i=1

µi cl
∗co(∪{∪v∗i ∈∂xgi(Gi(x̄,vi))∂x〈v

∗
i , Gi〉(x̄, vi)

| vi ∈ Vi(x̄)}),
µi max

vi∈Vi

gi(Gi(x̄, vi)) = µi gi(Gi(x̄, v̄i)) = 0, i = 1, 2, . . . , n.

(2.1)
Furthermore, if the (CQ) is satisfied at x̄, then (2.1) holds with y∗ 6= 0.

Remark 2.2. Theorem 2.1 reduces to [4, Theorem 3.2] for the problem (UP),
and [5, Proposition 3.9] and [2, Theorem 3.3] in the case of finite-dimensional
multiobjective optimization. Note further that our approach here, which
involves the fuzzy necessary optimality condition in the sense of the Fréchet
subdifferential and the inclusion formula for the limiting subdifferential of
maximum functions in the setting of Asplund spaces, is totally different from
the last two presented in the aforementioned papers.

The forthcoming theorem presents a (KKT) sufficient optimality condi-
tions for (weakly) robust efficient solutions of problem (CUP).

Theorem 2.3. Assume that x̄ ∈ C satisfies the robust (KKT) condition.
(i) If (f ◦ F, g ◦G) is type I pseudo convex at x̄, then x̄ ∈ Sw(CRP).
(ii) If (f ◦ F, g ◦G) is type II pseudo convex at x̄, then x̄ ∈ S(CRP).

Remark 2.4. Theorem 2.3 reduces to [4, Theorem 3.4] and [5, Theorem 3.10],
and develops [2, Theorem 3.11] and [6, Theorem 3.2] under pseudo-quasi
convexity assumptions.
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Abstract. In this paper we investigate conditions on the symbol func-
tion to guarantee that the composition operator from the Bergman space
of the polydisk to the Bergman space of the unit disk is bounded.

1. introduction

Let D denote the open unit disk in the complex plane. For α > −1, the
weighted Bergman space A2

α(D) is the space of analytic functions f in D for
which ∫

D
|f(z)|2 dAα(z) < +∞,

where

dAα(z) = π−1(α+ 1)(1− |z|2)αdx dy

is the weighted area measure in the unit disk. It is well-known that A2
α(D)

equipped with the inner product

〈f, g〉 = (α+ 1)

∫
D
f(z)g(z)(1− |z|2)αdA(z),

2020 Mathematics Subject Classification. Primary 47B33; 30H20
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is a Hilbert space with the following reproducing kernel (see [4])

Kw(z) =
1

(1− zw)α+2
.

We mean by polydisk the subset Dn = D × · · · × D of the n-dimensional
complex space. Now let Hol(Dn) denote the space of holomorphic functions
on Dn. The weighted Bergman space on the polydisk Dn is defined by

A2
α(Dn) = Hol(Dn) ∩ L2(Dn, dVα)

where

dVα(z) = dAα(z1) · · · dAα(zn),

and

dAα(zk) = π−1(α+ 1)(1− |zk|2)αdxkdyk, 1 ≤ k ≤ n.

This means that a function f(z1, ..., zn) in Hol(Dn) belongs to A2
α(Dn) if

‖f‖2A2
α(Dn) =

∫
Dn
|f(z1, ..., zn)|2dAα(z1) · · · dAα(zn) < +∞.

The reproducing kernel of A2
α(Dn) is given by (see the papers [5] and [6])

Kz(w) =
n∏
j=1

1

(1− zjwj)α+2
= Kz1(w1) · · ·Kzn(wn).

Let Φ : Dm → Dn be a holomorphic mapping (m,n are positive integers):

Φ(z) =
(
ϕ1(z), . . . , ϕn(z)

)
, z = (z1, . . . , zm) ∈ Dm.

Consider the composition operator

CΦ : A2
α(Dn)→ A2

β(Dm),

defined by CΦ(f) = f ◦Φ. Moreover, if ψ : Dn → C is holomorphic, then the
weighted composition operator Cψ,Φ is defined by

Cψ,Φ(f) = ψ · f ◦ Φ, f ∈ A2
α(Dn).

In this paper, we shall focus on the composition operator

CΦ : A2
α(D2)→ A2

α(D).

This problem can then be studied for CΦ : A2
α(Dk) → A2

α(D), and our
choice k = 2 is for simplicity. We shall prove that if ϕ and ψ are analytic
self mappings of the unit disk, and Φ = (ϕ,ψ) : D → D2 is a holomorphic
function such that ‖ϕψ‖∞ < 1, then CΦ : A2

α(D2)→ A2
α(D) is bounded. We

should mention that this problem for the Hardy space is already known; see
[3]. For recent work on this topic see the papers [1] and [2].
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2. Preliminaries

Let F (z, w) ∈ A2
α(D2). Note that

CΦF (z) = F (ϕ(z), ψ(z)).

Let

F (z, w) =

∞∑
n=0

znFn(w) =

∞∑
n=0

wnGn(z).

Since for m 6= n we have∫
D2

znzmFn(w)Fm(w)dAα(z)dAα(w) = 0,

it follows that

‖F‖2A2
α(D2) =

∞∑
n=0

‖zn‖2A2
α(D)‖Fn‖

2
A2
α(D)

=
∞∑
n=0

n! Γ(α+ 2)

Γ(α+ n+ 2)
‖Fn‖2A2

α(D).

Similarly, we see that

‖F‖2A2
α(D2) =

∞∑
n=0

n! Γ(α+ 2)

Γ(α+ n+ 2)
‖Gn‖2A2

α(D).

Now let σ be a number satisfying

‖ϕψ‖∞ = sup
z∈D
|ϕ(z)ψ(z)| < σ < 1.

Then we can find measurable disjoint subsets Ω1 and Ω2 in the unit disk
such that

∫
Ω1∪Ω2

dAα(z) = 1, and |ϕ(z)| <
√
σ, a.e. in Ω1, and |ψ(z)| <

√
σ,

a.e. in Ω2. To see this we define

Ω1 = {z : |ϕ(z)| <
√
σ, a.e.},

and

Ω2 = {z : |ϕ(z)| ≥
√
σ, a.e.}.

Clearly if z /∈ Ω1, then z ∈ Ω2 and |ϕ(z)| ≥
√
σ. Hence we must have

|ψ(z)| <
√
σ since otherwise we have |ϕ(z)ψ(z)| ≥ σ which is not possible.

This argument will be used in the proof of the main result.

3. Main result

We begin by proving that if Φ = (ϕ,ψ) is a holomorphic mapping from
the unit disk to D2, then the composition operator CΦ : A2

α(D2) → A2
α(D)

is bounded.

Theorem 3.1. Let Φ = (ϕ,ψ) where ϕ and ψ are analytic self-mappings
of the unit disk satisfying ‖ϕψ‖∞ < 1. Then CΦ : A2

α(D2) → A2
α(D) is

bounded.
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Sketch of proof. It is clear that

‖CΦF‖2A2
α(D) =

∫
Ω1

|CΦF |2 +

∫
Ω2

|CΦF |2.

Then we approximate ∫
Ω1

|CΦF |2

by σ, norm of Cψ and norm of F in the Bergman space A2
α(D2). Similarly,

one approximates ∫
Ω2

|CΦF |2

by σ, norm of Cϕ, and norm of F in the Bergman space A2
α(D2). Finally,

‖CΦF‖2A2
α(D) ≤ Cσ

(
‖Cϕ‖2 + ‖Cψ‖2

)
‖F‖A2

α(D2).
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Abstract. In this paper, we study the existence of a fixed point for a
noncyclic contraction map in a reflexive Banach space. The presented
results extend and improve some recent results in the literature.

1. Introduction

Let A and B be nonempty subsets of a metric space (X, d). A self mapping
T : A ∪ B → A ∪ B is said to be noncyclic provided that T (A) ⊆ A and
T (B) ⊆ B. We say that (x, y) ∈ A×B is an optimal pair of fixed points of
the noncyclic mapping T provided that

Tx = x, Ty = y and d(x, y) = d(A,B),

where d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.
In 2005, Anthony Eldred, Kirk and Veeremani [2] introduced noncyclic

mappings and studied the existence of an optimal pair of fixed points of a
given mapping.

In 2013, Abkar and Gabeleh [1] introduced noncyclic contraction map-
pings. As a result of theorem 2.7 of [6], for these mappings, the authors
presented the following existence theorem.
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Theorem 1.1. Let A and B be nonempty convex subsets of a uniformly
convex Banach space X such that A is closed and let T : A∪B → A∪B be
a noncyclic contraction map that is, there exists c ∈ [0, 1) such that

d(Tx, Ty) ≤ cd(x, y) + (1− c)d(A,B),

for all x ∈ A and y ∈ B. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0.
Then there exists a unique fixed point x ∈ A such that xn → x.

In this paper, we study the existence of a fixed point for a noncyclic
contraction map in a reflexive Banach space.

Here, we recall a definition and fact will be used in the next section.

Definition 1.2. [5] A Banach space X is said to be strictly convex if the
following implication holds for all x, y, p ∈ X and R > 0:

‖x− p‖ ≤ R
‖y − p‖ ≤ R

x 6= y

 ⇒ ‖x + y

2
− p‖ < R.

Theorem 1.3. [6] Let A and B be nonempty closed subsets of a complete
metric space (X, d). Let T be a noncyclic mapping on A ∪B satisfying

d(Tx, Ty) ≤ cd(x, y),

for each x ∈ A and y ∈ B where c ∈ [0, 1). Then T has a unique fixed point
x in A ∩B and the Picard iteration {Tnx0} converges to x for any starting
point x0 ∈ A ∪B.

2. Main results

The following results will be needed to prove the main theorems of this
section.

Lemma 2.1. Let A and B be nonempty subsets of the metric space (X, d)
and let T : A ∪ B → A ∪ B be a noncyclic contraction map. For x0 ∈ A,
define xn+1 := Txn and for y0 ∈ B, define yn+1 := Tyn for each n ≥ 0.
Then d(xn, yn)→ d(A,B) as n→∞.

The next two results show the existence of a fixed point for a noncyclic
contraction map in a reflexive Banach space.

Theorem 2.2. Let A and B be nonempty weakly closed subsets of a reflexive
Banach space X and let T : A∪B → A∪B be a noncyclic contraction map.
Then there exists (x, y) ∈ A×B such that ‖x− y‖ = d(A,B).

Proof. If d(A,B) = 0, the result follows from Theorem 1.3. So, we assume
that d(A,B) > 0. For x0 ∈ A, define xn+1 := Txn and for y0 ∈ A, define
yn+1 := Tyn for each n ≥ 0. By Lemma 2.2 of [6], the sequences {xn} and
{yn} are bounded. As X is reflexive and A is weakly closed, the sequence

{xn} has a subsequence{xnk
} with xnk

w−→ x ∈ A. As {ynk
} is bounded and

B is weakly closed, we can say, without loss of generality, that ynk

w−→ y ∈ B
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as k →∞. Since xnk
− ynk

w−→ x− y 6= 0 as k →∞, there exists a bounded
linear functional f : X → [0,+∞) such that

‖f‖ = 1 and f(x− y) = ‖x− y‖.

For each k ≥ 1, we have

|f(xnk
− ynk

)| ≤ ‖f‖‖xnk
− ynk

‖ = ‖xnk
− ynk

‖.

Since

lim
k→∞

f(xnk
− ynk

) = f(x− y) = ‖x− y‖,

it follows from Lemma 2.1 that

‖x− y‖ = lim
k→∞

|f(xnk
− ynk

)| ≤ lim
k→∞

‖xnk
− ynk

‖ = d(A,B).

Thus ‖x− y‖ = d(A,B). �

Definition 2.3. [4] A mapping F : C ⊆ X → X is called demiclosed at y

if, whenever xn
w−→ x ∈ C and Fxn

s−→ y ∈ X, it follows that Fx = y.

Let I is the identity map, I−T : A∪B → X is demiclosed at 0 if whenever

xn is a sequence in A ∪ B such that xnk

w−→ x ∈ A ∪ B and (I − T )xn
s−→ 0

as n→∞, then (I − T )x = 0.

Theorem 2.4. Let A and B be nonempty subsets of a reflexive Banach space
X such that A is weakly closed and let T : A ∪ B → A ∪ B be a noncyclic
contraction map. Then there exists x ∈ A such that Tx = x provided one of
the following conditions is satisfied:

(a) T is weakly continuous on A;
(b) I − T : A ∪B → X is demiclosed at 0.

Proof. If d(A,B) = 0, the result follows from Theorem 1.3. So, we assume
that d(A,B) > 0. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. By
Lemma 2.2 of [6], the sequence {xn} is bounded. As X is reflexive and A is

weakly closed, the sequence {xn} has a subsequence {xnk
} with xnk

w−→ x ∈
A as k →∞.

(a) Since T is weakly continuous on A and T (A) ⊆ A, we have xnk+1
w−→

Tx ∈ A as k →∞. Thus xnk
− xnk+1

w−→ x− Tx as k →∞. We assume the

contrary, x − Tx 6= 0. Since xnk
− xnk+1

w−→ x − Tx 6= 0 as k → ∞, there
exists a bounded linear functional f : X → [0,+∞) such that

‖f‖ = 1 and f(x− Tx) = ‖x− Tx‖.

For each k ≥ 1, we have

|f(xnk
− xnk+1)| ≤ ‖f‖‖xnk

− xnk+1‖ = ‖xnk
− xnk+1‖.

Since

lim
k→∞

f(xnk
− xnk+1) = f(x− Tx) = ‖x− Tx‖,
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it follows from Lemma 2.1 that

‖x− Tx‖ = lim
k→∞

|f(xnk
− xnk+1)| ≤ lim

k→∞
‖xnk

− xnk+1‖ = 0.

Thus ‖x− Tx‖ = 0, a contradiction.
(b) By Lemma 2.1, we have

‖xnk
− Txnk

‖ = ‖xnk
− xnk+1‖ → 0

as k → ∞. So (I − T )xnk

s−→ 0 as k → ∞. As I − T : A ∪ B → X is
demiclosed at 0, it follows that (I − T )x = 0. Hence Tx = x. �

The next result show the existence and uniqueness of a best proximity
point for a cyclic contraction map in a reflexive and strictly Banach space.
This theorem guarantees the uniqueness in Theorem 3.5 of [3].

Theorem 2.5. Let A and B be nonempty closed and convex subsets of a
reflexive and strictly convex Banach space X and let T : A ∪B → A ∪B be
a noncyclic contraction map. If (A−A) ∩ (B −B) = {0}, then there exists
a unique optimal pair of fixed points (x, y) ∈ A×B for T .

Proof. If d(A,B) = 0, the result follows from Theorem 1.3. So, we assume
that d(A,B) > 0. Since A is closed and convex, it is weakly closed. It follows
from Theorem 2.2 that there exists (x, y) ∈ A × B such that ‖x − y‖ =
d(A,B). To show the uniqueness of (x, y), suppose that there exists another
(x′, y′) ∈ A×B such that ‖x′− y′‖ = d(A,B). As (A−A)∩ (B −B) = {0}
we conclude that x− x′ 6= y− y′ and so x− y 6= x′− y′ . Since A and B are
both convex, it follows from the strict convexity of X that

‖x + x′

2
− y + y′

2
‖ = ‖x− y + x′ − y′

2
− 0‖ < d(A,B),

a contradiction. As

‖Tx− Ty‖ = ‖x− y‖ = d(A,B),

we conclude, from the uniqueness of (x, y), that (Tx, Ty) = (x, y). Thus
Tx = x and Ty = y. �
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Abstract. In this paper, we study the existence of a best proximity
point for a cyclic quasi-contraction map in a reflexive Banach space.
The presented results extend and improve some recent results in the
literature.

1. Introduction

In 2009 Al-Thagafi and Shahzad [1] prove the existence of a best proximity
point for a cyclic contraction map in a reflexive Banach space.

Theorem 1.1. [1, Theorem 9] Let A and B be nonempty weakly closed
subsets of a reflexive Banach space X and let T : A∪B → A∪B be a cyclic
contraction map. Then there exists (x, y) ∈ A × B such that ‖x − y‖ =
d(A,B).

Definition 1.2. [4] Let A and B be nonempty subsets of a normed space
X and T be a cyclic map on A ∪ B. We say that T satisfies the proximal
property if

xn
w−→ x ∈ A ∪B and ‖xnk

− Txnk
‖ → d(A,B) =⇒ ‖x− Tx‖ = d(A,B).
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Theorem 1.3. [1, Theorem 10] Let A and B be nonempty subsets of a
reflexive Banach space X such that A is weakly closed and let T : A ∪B →
A ∪ B be a cyclic contraction map. Then there exists x ∈ A such that
‖x− Tx‖ = d(A,B) provided one of the following conditions is satisfied:

(a) T is weakly continuous on A;
(b) T satisfies the proximal property.

Theorem 1.4. [1, Theorem 12] Let A and B be nonempty subsets of a
reflexive and strictly convex Banach space X such that A is closed and convex
and let T : A ∪ B → A ∪ B be a cyclic contraction map. Then there exists
a unique x ∈ A such that T 2x = x and ‖x− Tx‖ = d(A,B) provided one of
the following conditions is satisfied:

(a) T is weakly continuous on A;
(b) T satisfies the proximal property.

Theorem 1.5. [6] Let A and B be nonempty and closed subsets of a com-
plete metric space (X, d). Let T be a cyclic mapping on A ∪B such that

d(Tx, Ty) ≤ cmax
{
d(x, y), d(x, Tx), d(y, Ty)

}
,

for all x ∈ A and y ∈ B where c ∈ [0, 1). Then T has a unique fixed point
x in A ∩B and the Picard iteration {Tnx0} converges to x for any starting
point x0 ∈ A ∪B.

2. main results

The following results will be needed to prove the main theorems of this
section.

Lemma 2.1. Let A and B be nonempty subsets of the metric space (X, d)
and let T : A ∪ B → A ∪ B be a cyclic quasi-contraction map, that is there
exists λ ∈ [0, 1) such that

d(Ty, Tx) ≤ λmax{d(x, y), d(x, Tx), d(Ty, y)}+ (1− λ)d(A,B)

for all x ∈ A and y ∈ B. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0.
Then d(x2n, x2n+1)→ d(A,B) as n→∞.

The next two results that are extentions of Theorems 1.1 and 1.3, show
the existence of a best proximity point for a cyclic qusi-contraction map in
a reflexive Banach space.

Theorem 2.2. Let A and B be nonempty weakly closed subsets of a reflexive
Banach space X and let T : A ∪ B → A ∪ B be a cyclic quasi-contraction
map. Then there exists (x, y) ∈ A×B such that ‖x− y‖ = d(A,B).

Proof. If d(A,B) = 0, the result follows from Theorem 1.5. So, we assume
that d(A,B) > 0. For x0 ∈ A, define xn+1 := Txn and for each n ≥ 0. By
Lemma 3.2 of [3], the sequences {x2n} and {x2n+1} are bounded. As X is
reflexive and A is weakly closed, the sequence {x2n} has a subsequence{x2nk

}
with x2nk

w−→ x ∈ A. As {x2nk+1} is bounded and B is weakly closed, we
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can say, without loss of generality, that x2nk+1
w−→ y ∈ B as k → ∞. Since

x2nk
− x2nk+1

w−→ x − y 6= 0 as k → ∞, there exists a bounded linear
functional f : X → [0,+∞) such that

‖f‖ = 1 and f(x− y) = ‖x− y‖.
For each k ≥ 1, we have

|f(x2nk
− x2nk+1)| ≤ ‖f‖‖x2nk

− x2nk+1‖ = ‖x2nk
− x2nk+1‖.

Since

lim
k→∞

f(x2nk
− x2nk+1) = f(x− y) = ‖x− y‖,

it follows from Lemma 2.1 that

‖x− y‖ = lim
k→∞

|f(x2nk
− x2nk+1)| ≤ lim

k→∞
‖x2nk

− x2nk+1‖ = d(A,B).

Thus ‖x− y‖ = d(A,B). �

The following theorem is proved in a completely similar way to the proof
of theorem 1.3.

Theorem 2.3. Let A and B be nonempty subsets of a reflexive Banach space
X such that A is weakly closed and let T : A∪B → A∪B be a cyclic quasi-
contraction map. Then there exists x ∈ A such that ‖x − Tx‖ = d(A,B)
provided one of the following conditions is satisfied:

(a) T is weakly continuous on A.
(b) T satisfies the proximal property.

Proof. If d(A,B) = 0, the result follows from Theorem 1.5. So, we assume
that d(A,B) > 0. For x0 ∈ A, define xn+1 := Txn for each n ≥ 0. By
Lemma 3.2 of [3], the sequence {x2n} is bounded. As X is reflexive and A

is weakly closed, the sequence {x2n} has a subsequence {x2nk
} with x2nk

w−→
x ∈ A as k →∞.

(a) Since T is weakly continuous on A and T (A) ⊆ B, we have x2nk+1
w−→

Tx ∈ B as k → ∞. Thus x2nk
− x2nk+1

w−→ x − Tx as k → ∞. Since

x2nk
− x2nk+1

w−→ x − Tx 6= 0 as k → ∞, there exists a bounded linear
functional f : X → [0,+∞) such that

‖f‖ = 1 and f(x− Tx) = ‖x− Tx‖.
For each k ≥ 1, we have

|f(xnk
− xnk+1)| ≤ ‖f‖‖x2nk

− x2nk+1‖ = ‖x2nk
− x2nk+1‖.

Since

lim
k→∞

f(x2nk
− x2nk+1) = f(x− Tx) = ‖x− Tx‖,

it follows from Lemma 2.1 that

‖x− Tx‖ = lim
k→∞

|f(x2nk
− x2nk+1)| ≤ lim

k→∞
‖x2nk

− x2nk+1‖ = d(A,B).

Thus ‖x− Tx‖ = d(A,B).
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(b) By Lemma 2.1 , we have

‖x2nk
− Tx2nk

‖ = ‖x2nk
− x2nk+1‖ → d(A,B).

as k →∞. As T satisfies the proximal property, it follows that ‖x− Tx‖ =
d(A,B). �

The next result that is extention of Theorem 1.4,shows the existence and
uniqueness of a best proximity point for a cyclic quasi contraction map in a
reflexive and strictly Banach space.

Theorem 2.4. Let A and B be nonempty subsets of a reflexive and strictly
convex Banach space X such that A is closed and convex let T : A ∪ B →
A ∪B be a cyclic quasi-contraction map. Then there exists a unique x ∈ A
such that T 2x = x and ‖x − Tx‖ = d(A,B) provided one of the following
conditions is satisfied:

(a) T is weakly continuous on A.
(b) T satisfies the proximal property.

Proof. If d(A,B) = 0, the result follows from Theorem 1.5. So, we assume
that d(A,B) > 0. Since A is closed and convex, it is weakly closed. It follows
from Theorem 2.3 that there exists x ∈ A such that ‖x − Tx‖ = d(A,B).
Also

‖T 2x− Tx‖ ≤ λmax
{
‖Tx− x‖, ‖T 2x− Tx‖

}
+ (1− λ)d(A,B)

= λ‖T 2x− Tx‖+ (1− λ)d(A,B),

and so ‖T 2x − Tx‖ = d(A,B). In fact, T 2x = x. To see this, assume that
T 2x 6= x. It follows, from the convexity of A and the strict convexity of X,
that

‖T
2x+ x

2
− Tx‖ < d(A,B),

a contradiction. A similar argument shows the uniqueness of x follows as �
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Abstract. In this article, we give some generalized minimax inequali-
ties for vector-valued functions by means of the generalized KKM theo-
rem.
Keywords: G-convex space, Generalized KKM Map, Cone-γ-generalized
quasi-convex (concave), Minimax Inequality.

1. INTRODUCTION

The minimax inequality plays a significant role in many fields, such as
variational inequalities, game theory, mathematical economics, optimization
theory and fixed point theory. Because of widespread use, this inequality
has been extended in variety of ways. (For example, see M. Salehnejad and
M. Azhini [8], Ding and Tan [3], Horvath [7], Georgiev and Tanaka [6])
At the beginning, the consideration of minimax theorems were mainly de-
voted to the study of real and vector-valued functions in topological vector
spaces. Motivated by the well-known works of Horvath [7], there here ap-
peared many generalizations of the concept of convex subset of a tapologi-
cal vector space. The most general one seems to be that of the generalized
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convex space or G-convex space introduced by Park and Kim [10, 11] which
extends many generalizd convex structures on topological vector space. This
will be the framework in which we obtain in this work some minimax inequal-
ities for vector-valued functions. (See Chen [2], Chang et al [1], M.G.Yang
et al [14])

2. Preliminaries

Let X be a topological space and E be a nonempty subset of X. We
denote by ⟨E⟩, the family of all nonempty finite subsets of E. Let ∆n be
the standard n–simplex (e1, . . . , en) in Rn+1. If J is a nonempty subset
of {0, 1, . . . , n}, we denote by ∆J the convex hull of the vertices {ej , j ∈
J}. The following notion of a generalized convex (or G–convex) space was
introduced by Park and Kim [12]. Let X be a topological space and D is
a nonempty set, (X,D; Γ) is said to be a G–convex space if for each A =
{a0, . . . , an} ∈ ⟨D⟩, there exists a subset Γ(A) = ΓA of X and a continuous
function ϕA : ∆n → Γ(A) such that J ⊂ A implies ϕA(∆J) ⊂ Γ(J).
When D ⊂ X, (X,D; Γ) will be denoted by (X ⊃ D; Γ) and if X = D, we
write (X; Γ) in place of (E,E; Γ). For a G–convex space (X ⊃ D; Γ),

(1) a subset Y of X is said to be Γ–convex if for each N ∈ ⟨D⟩, N ⊂ Y
implies ΓN ⊂ Y ;

(2) the Γ–convex hull of a subset Y of X, denoted by Γ − Co(Y ), is
defined by

Γ − Co(Y ) =
∩

{Z ⊂ X : Z is a Γ–convex subset containing Y }.

Definition 2.1. If V is a real vector space, a nonempty subset P ⊂ V is a
cone if for every x ∈ P and for every λ ≥ 0, we have λx ∈ P . The cone P
is called

(1) convex if for all x1, x2 ∈ P , x1 + x2 ∈ P
(2) pointed if P ∩ (−P ) = {0}
(3) proper if P ̸= {0} and P ̸= V
(4) solid if intP ̸= ∅ (where intP denotes the interior of the set P ).

If P is a convex cone of a real vector space V , the relation ⪯p define below
is a (partial) vector ordering of V :

x ⪯p y ⇔ y − x ∈ P, ∀x, y ∈ V

Definition 2.2. Let Y be a nonempty set and E be a nonempty subset of a
G–convex space (X,D; Γ). T : Y → 2E is called a generalized KKM mapping
if for any finite set {y0, y1, . . . , yn} ⊂ Y , there exists {x0, x1, . . . , xn} ∈ ⟨E ∩
D⟩ such that for any subset {xi0 , xi1 , . . . , xik} ⊂ {x0, . . . , xn}, 0 ≤ k ≤ n,
we have

Γ ({xi0 , . . . , xik}) ⊂
k∪

j=0

T (yij )

249



SOME MINIMAX THEOREMS FOR VECTOR-VALUED FUNCTIONS IN G-CONVEX SPACES

Theorem 2.3 ([8]). Let E be a nonempty Γ–convex subset of a G–convex
space (X; Γ) and G : E → 2X be such that for any y ∈ E, G(y) is compactly
closed. Then:

(1) If G is a generalized KKM mapping, then the family of sets {G(y) :
y ∈ E} has the finite intersection property.

(2) If the family {G(y) : y ∈ E} has the finite intersection property and
Γ(x) = {x} for each x ∈ X, then G is a generalized KKM mapping.

Definition 2.4. Let Y be a nonempty set and (X; Γ) be a G-convex space
and E,F are nonempty subsets of X,Y , respectively. The bi-function φ :
E×F → V is said to be cone-γ-generalized quasi-convex (concave) in second
component for some γ ∈ V , if for any finite subset {y0, y1, . . . , yn}⊂ F ,
there exists a finite subset {x0, x1, . . . , xn} ⊂ E such that for any subset
{xi0 , ..., xik} ⊂ {x0, x1, . . . , xn} and any x∗ ∈ coC{xi0 , ..., xik}, there exists
j ∈ {0, ..., k} such that

φ(x∗, yij ) ∈ γ + P

( φ(x∗, yij ) ∈ γ − P ).

3. Main Results

In this section, we present Minimax inequalities in G-convex spaces for
vector-valued functions. In sequel, suppose that X is a Hausdorff topological
space, (X; Γ) is a G–convex space and E,F are nonempty Γ–convex subsets
of X. Also, (V, P ) is an ordered topological vector space and P is a closed
pointed convex cone such that P ̸= ϕ.

Definition 3.1. A function φ : X −→ V is called lower [resp. upper] semi-
continuous if for every γ ∈ V , the set {x ∈ X : f(x) ∈ γ − P} [resp.
{x ∈ X : f(x) ∈ γ + P}] is closed in X. [9]

Theorem 3.2. Let φ and ψ be two functions from E × F to V such that:
(1) φ(x, y) is lower semi-continuous in x, for each y ∈ F ;
(2) ψ(x, y) is cone−γ−generalized quasi-concave in y, for some γ ∈ V ;
(3) φ(x, y) ⪯ ψ(x, y) for all (x, y) ∈ E × F ;
(4) for some y0 ∈ F , {x ∈ E : φ(x, y0) ∈ γ − P} is a compact subset

of E.
Then there exists an x̄ ∈ E such that

φ(x̄, y) ∈ γ − P for all y ∈ F.

Remark 3.3. Fan’s Minimax inequality can be deduced from the above The-
orem if X = Y , E = F , V = R and φ = ψ. (See [4])

Theorem 3.4. Let φ : E × E → V and γ ∈ V be such that
(1) for each x ∈ E, φ(x, y) is a lower semi-continuous function of y on

each non-empty compact subset C of E;
(2) φ(x, y) is cone−γ−generalized quasi-concave in x;
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(3) there exist a non-empty compact convex subset M of E and a non-
empty compact K of E such that for each y ∈ E \ K, there is an
x ∈M with φ(x, y) /∈ γ − P .

Then there exists ŷ ∈ K such that φ(x, ŷ) ∈ γ − P for all x ∈ E.

As an immediate result of Theorem 3.4, we can conclude the following
minimax inequality theorem, which in turn generalizes minimax inequality
due to Ding and Tan [3] and Fan [5], to vector-valued and cone−γ−generalized
quasi-concave functions.

Theorem 3.5. Let γ ∈ V and φ,ψ : E×E → V be two functions such that
(1) φ(x, y) ⪯ ψ(x, y) for all (x, y) ∈ E × E
(2) for each fixed x ∈ E, φ(x, y) is a lower semi-continuous function of

y on each non-empty compact subset C of E;
(3) ψ(x, y) is cone−γ−generalized quasi-concave in x;
(4) there exist a non-empty compact convex subset M of E and a non-

empty compact subset K of E such that for each y ∈ E \K, there is
an x ∈M with φ(x, y) /∈ γ − P .

Then there exists ŷ ∈ K such that φ(x, ŷ) ∈ γ − P for all x ∈ E.

The following is a generalization of minimix inequality due to Tan and
Yuan [13], to vector-valued and cone−γ−generalized quasi-concave func-
tions.

Theorem 3.6. Let γ ∈ V and φ,ψ : E×F → V be two functions such that
(1) φ(x, y) ⪯ ψ(x, y) for all (x, y) ∈ E × F
(2) for each fixed y ∈ F , φ(x, y) is a lower semi-continuous function of

x on each non-empty compact subset C of E;
(3) ψ(x, y) is cone−γ−generalized quasi-concave in y;
(4) there exists a non-empty compact subset K of E and y∗ ∈ F such

that ψ(x, y∗) /∈ γ − P for each x ∈ E \K.
Then there exists an x̂ ∈ K such that φ(x̂, y) ∈ γ − P for all y ∈ F .
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Abstract. In this paper we investigate power bounded and mean er-
godic properties of composition operators on Bloch type spaces and also
on Zygmund type spaces. We study their relation with a corresponding
composition operator on analytic Lipschitz algebras and also on differ-
entiable Lipschitz algebras, respectively.

1. Introduction

Let X be a Banach space and B(X) denote the space of all bounded
operators on X. An operator T on X is called power bounded if the sequence
{Tn}n∈N is bounded in B(X). The operator T on X is called mean ergodic
if for each x ∈ X the sequence {T[n](x)}n∈N is convergent to some Lx ∈ X
for some L ∈ B(X), where

T[n] :=
1

n

n∑
k=1

T k, for each n ∈ N.

Theory of mean ergodic operators on Banach spaces are related to the theory
of bases in Banach spaces. It is known that a Banach space X with a basis is
reflexive if and only if every power bounded operator on X is mean ergodic.
This topic was first studied by Bonet and Domanski in 2011 on H(U) for
a Stein manifold U [1]. Later, many authors investigated power bounded
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and mean ergodic properties of different type of operators between various
type of Banach spaces. In this paper we mainly focus on certain type of
operators called composition operators, defined as follows.

Let D denote the open unit disc of the complex plane C and H(D) de-
note the space all complex-valued analytic functions on D. For an analytic
selfmap φ of D, the composition operator induced by φ, denoted by Cφ, is
defined by

Cφ(f) = f ◦ φ, for each f ∈ H(D).
Composition operators appear in the study of dynamical systems and also
in characterizing isometries on many analytic function spaces. Composition
operators between various spaces of analytic functions have been studied by
many authors, see for example [2, 3, 4] and the references therein.

Power bounded and mean ergodic composition operators on different Ba-
nach spaces have been studied by many authors, see for example [1, 5] and
the references therein. In the next chapter, we investigate power bounded
and mean ergodic properties of composition operators on Bloch type spaces
and also on Zygmund type spaces. Indeed, we study their relation with a
corresponding composition operator on analytic Lipschitz algebras and also
on differentiable Lipschitz algebras, respectively.

2. Main result

For each 0 < α < ∞, the Bloch type space of order α, denoted by Bα, is
the space of all functions f ∈ H(D) satisfying

sup
z∈D

(1− |z|)α|f ′(z)| < ∞.

The Bloch type space Bα is a Banach space equipped with the norm
∥f∥Bα = |f(0)|+ sup

z∈D
(1− |z|)α|f ′(z)|, (f ∈ Bα).

Let A(D) denote the classic disc algebra containing of all continuous func-
tions on D which are analytic on D. For each 0 < α ≤ 1, the analytic Lip-
schitz algebra of order α, denoted by LipA(D, α), is algebra of all functions
f ∈ A(D) with

ρα(f) = sup
z,w∈D
z ̸=w

|f(z)− f(w)|
|z − w|α

< ∞.

The analytic Lipschitz algebra LipA(D, α) is a Banach algebra with the norm
∥f∥Lipα = ∥f∥∞ + ρα(f), (f ∈ LipA(D, α)),

where ∥f∥∞ = supz∈D |f(z)|.
It is known that for each 0 < α < 1, every f ∈ Bα has a unique continuous

extension to some F ∈ LipA(D, 1 − α), see [3]. We next give the relation
between power boundedness of a composition operator on Bloch type spaces
and power boundedness of a corresponding composition operator on analytic
Lipschitz algebras.
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Theorem 2.1. Let 0 < α < 1 and φ be an analytic selfmap of D. Then,
the composition operator Cφ : Bα → Bα is power bounded if and only if
the composition operator Cϕ : LipA(D, 1 − α) → LipA(D, 1 − α) is power
bounded, where ϕ is the unique extension of φ to D.

We next give the result of Theorem 2.1 for the mean ergodicity of a
composition operator between Bloch type spaces.

Theorem 2.2. Let 0 < α < 1 and φ be an analytic selfmap of D. Then,
the composition operator Cφ : Bα → Bα is mean ergodic if and only if the
composition operator Cϕ : LipA(D, 1−α) → LipA(D, 1−α) is mean ergodic,
where ϕ is the unique extension of φ to D.

Let 0 < α < ∞. The Zygmund type space of order α, denoted by Zα,
consists of those analytic functions f on D satisfying

sup
z∈D

(1− |z|)α|f ′′(z)| < ∞.

The Zygmund type space Zα is a Banach space, with the norm
∥f∥Zα = |f(0)|+ |f ′(0)|+ sup

z∈D
(1− |z|)α|f ′′(z)|, (f ∈ Zα).

More generally, for each n ∈ N and 0 < α < ∞, the space of all functions
f ∈ H(D) satisfying

sup
z∈D

(1− |z|)α|f (n+1)(z)| < ∞,

is called n-Zygmund type space and is denoted by Zα
n , see [3]. The space

Zα
n is a Banach space equipped with the norm

∥f∥Zα
n
:= |f(0)|+|f ′(0)|+· · ·+|f (n)(0)|+sup

z∈D
(1−|z|)α|f (n+1)(z)|, (f ∈ Zα

n ).

For each n ∈ N, differentiable Lipschitz algebra of order n, denoted by
Lipn(X,α), is the algebra of all complex-valued functions f on D whose
derivatives up to order n exist and f (k) ∈ Lip(D, α) for each 0 ≤ k ≤ n. The
algebra Lipn(D, α) is a Banach algebra equipped with the norm

∥f∥Lipn(D,α) :=
n∑

k=0

∥f (k)∥∞ + ρα(f
(k))

k!
, (f ∈ Lipn(D, α)).

As in the case of Bloch type spaces, it is known that for each n ∈ N
and 0 < α < 1, every f ∈ Zα

n has a unique continuous extension to
some F ∈ Lipn(D, α), see [3]. Our next result gives the relation between
power boundedness of a composition operator on n-Zygmund type spaces
and power boundedness of a corresponding composition operator on differ-
entiable Lipschitz algebras of order n.

Theorem 2.3. Let n ∈ N, 0 < α < 1 and φ be an analytic selfmap of D.
Then, the composition operator Cφ : Zα

n → Zα
n is power bounded if and only
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if the composition operator Cϕ : Lipn(D, 1 − α) → Lipn(D, 1 − α) is power
bounded, where ϕ is the unique extension of φ to D.

As the final result, we next consider mean ergodicity of a composition
operator between n-Zygmund type spaces.

Theorem 2.4. Let n ∈ N, 0 < α < 1 and φ be an analytic selfmap of D.
Then, the composition operator Cφ : Zα

n → Zα
n is mean ergodic if and only

if the composition operator Cϕ : Lipn(D, 1 − α) → Lipn(D, 1 − α) is mean
ergodic, where ϕ is the unique extension of φ to D.

References
1. J. Bonet and P. l. Domanski, A note on mean ergodic composition operators on spaces of

holomorphic functions, Rev. R. Acad. Cienc. Exactas Fis Nat. Ser. A Math. RACSAM,
105 (2) (2011) 389-396.

2. C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions,
Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995.

3. H. Mahyar and A. H. Sanatpour, Compact composition operators on certain analytic
Lipschitz spaces, Bulletin of the Iranian Mathematical Society, 38 (1) (2012) 85-99.

4. J. H. Shapiro, Composition Operators and Classical Function Theory, Springer, Berlin,
1993.

5. E. Wolf, Power bounded composition operators, Comput. Methods Funct. Theory, 12
(1) (2012) 105-117.

256



Oral Presentation ∗ : Speaker

CONVOLUTION, ERROR FUNCTION AND A NEW

SPECIAL FUNCTION IN CLASS OF UNIVALENT

ANALYTIC FUNCTION

SEYED HADI SAYEDAIN BOROUJENI∗AND SHAHRAM NAJAFZADEH

Department of Mathematics, Payame Noor University, Tehran, Iran.
h.sayedain@pnu.ac.ir, hadisayedain@gmail.com

shnajafzadeh44@pnu.ac.ir, najafzadeh1234@yahoo.ie

Abstract. The main objective of this paper is to introduce a new
special class of analytic univalent functions based on a combination of
the Error function and a new function, that we create with the help
of convolution. we examine several properties of this class, such as,
Weighted mean, Coefficient estimate and extreme points.

1. Introduction

Let U = {z ∈ C : |z| < 1} be the open unit disk in the complex plane
C. Denote by A the well-known class of analytic and normalized functions
of in U. we note that each function f in A has the form

f(z) = z +
∞∑
n=2

anz
n, (z ∈ U, an ∈ C). (1.1)

we say that a function f is univalent in U if f(z1) 6= f(z2) for all z1, z2 ∈ U
with z1 6= z2. The family of all univalent functions f in U is denoted by S
[2, 4]. The subclass of A create withe changing negative coefficients and are
of the type
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f(z) = z −
∞∑
n=2

anz
n, (an ≥ 0). (1.2)

The convolution or Hadamard product f(z) and g(z) for f to form (1.1)
and g(z) = z +

∑∞
n=2 bnz

n is (f ∗ g)(z) = z +
∑∞

n=2 anbnz
n for more details

see [2].
The Error Function and Subclasses of Analytic Univalent Functions intro-
duce by Sayedain and Najafzadeh [5], is form

Erf(z) =
2√
π

∞∑
n=0

(−1)n

(2n+ 1)n!
z2n+1

= z +
∞∑
n=2

(−1)n−1

(2n− 1)(n− 1)!
zn, (z ∈ C). (1.3)

Let h(z) = z + (
3

e
− 2)zn, (n = 0, 1, 2, ...) and the Taylor series of this h

h(z) = z −
∞∑
n=2

(−1)n(2n− 1)

n!
zn, (1.4)

Definition 1.1. The function H(z) denote by convolution h(z) and Erf(z)

H(z) = h(z) ∗ (2z − Er(f)) ∗ f(z)

= z −
∞∑
n=2

1

n((n− 1)!)2
anz

n. (1.5)

Where f(z) is (1.2). new, a function of the form (1.2) is in the classWQ(a, b)
if it satisfies the condition

Re

{
H(z) + zH ′(z) + az2H ′′(z)− z

azH ′(z) + (1− b)H(z)

}
> Q, (0≤Q<1). (1.6)

Where 0 ≤ a, b ≤ 1, a < b and H(z) are give by (1.5), also H ′(z), H ′′(z) are
first and second order derivatives, respectively [3].

2. main results

In the folloing theorem, we express a condition for the functions that
belong to the class WQ(a, b).

Theorem 2.1. Let f(z) of the form(1.2). f belong to the class WQ(a, b) if
and only if

∞∑
n=2

n+ 1

n
+ a(n(Q+ 1)) +Q(1− b)

((n− 1)!)2
an ≤ 1+Q(b−a−1), (0≤Q<1). (2.1)
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Proof. By calculating the derivatives of the first and second order and plac-
ing in (1.5) and also consider ”z” as a real number that is moved to z → 1−

we have

1−
∞∑
n=2

a(n− 1) +
1

n
+ 1

((n− 1)!)2
an

(1 + a− b)−
∞∑
n=2

an− b+ 1

((n− 1)!)2
an

> Q

Q(b− a− 1) + 1−
∞∑
n=2

a(n(Q+ 1)) +Q(1− b) +
1

n
+ 1

((n− 1)!)2
an ≥ 0

So, we proved that if f(z) belong to the class WQ(a, b) the related (2.1)
holds. Conversely, it is easily proven. see [5]. �

The results is sharp for example g(z) = z − 1 +Q(b− a− 1)

Q(2a− b+ 1) + 2a+ 1.5
z2.

Theorem 2.2. WQ(a, b) is a convex set.

Proof. It is enough to show for fi(z) belong to the class WQ(a, b), then
m∑
i=1

λifi(z) ∈ WQ(a, b) where
m∑
i=1

λi = 1 and λi ≥ 0. �

3. on geometric properties

In the following theorem, we introduce the functions that belong to the
classWQ(a, b) and are the extreme points of the set. we will show that they
have such a property [1].

Theorem 3.1. Let fn(z) = z − ((n− 1)!)2(1 +Q(b− a− 1))

a(n(Q+ 1)) +Q(1− b) +
1

n
+ 1

zn, (n =

2, 3, ...) also f1(z) = z. then
∞∑
n=1

µnfn(z) ∈ WQ(a, b) if and only if
∞∑
n=1

µn = 1

and µn ≥ 0.

Proof. Let assume first
∞∑
n=1

µnfn(z) ∈ WQ(a, b) for
∞∑
n=1

µn = 1 and µn ≥ 0.

we will show that fn ∈ WQ(a, b) (n = 2, 3, ...). Refer theorem(2.1)

an ≤
1 +Q(b− a− 1)((n− 1)!)2

a(n(Q+ 1)) +Q(1− b) +
1

n
+ 1

therefore by letting

µn =
a(n(Q+ 1)) +Q(1− b) +

1

n
+ 1

1 +Q(b− a− 1)((n− 1)!)2
an
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and that µ1 = 1− (µ2 +µ3 + ...) we conclude the required result. Conversely
is easily. �

Theorem 3.2. Let f1(z) = z −
∑∞

n=2 an,1z
n and f2(z) = z −

∑∞
n=2 an,2z

n

belongs to the classWQ(a, b), then the weighted mean of f1, f2 in toWQ(a, b).

Proof. Let Ht(z) =
1

2
(1 + t)f1(z) +

1

2
(1− t)f2(z) we have

Ht(z) = z − 1

2

∞∑
n=2

((1 + t)an,1 + (1− t)an,2)zn

since f1 and f2 are in the class WQ(a, b), so by theorem(2.1) we have

∞∑
n=2

a(n(Q+ 1)) +Q(1− b) +
n+ 1

n
((n− 1)!)2

[
1

2
(1 + t)an,1 +

1

2
(1− t)an,2]

≤ 1

2
(1 + t)(1 +Q(b− a− 1)) +

1

2
(1− t)(1 +Q(b− a− 1))

Which the above expression is equal to Q(b−a− 1) + 1. So the condition of
theorem(2.1) for Ht(z) is established and therefore the proof is complete. �
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Abstract. This is an expository manuscript to introduce basics of
Nevanlinna theory and some of its applications in complex function for
the general audience with minimum back ground of complex analysis.
We will see how the fundamental theorem of algebra for polynomials
and the notion of their degree can be generalized naturally to entire and
meromorphic functions. The aim of writing this note is to introduce this
beautiful branch of complex analysis to students and the mathematical
community around us.

1. Jensen Formula

The order of growth of an entire function is defined by ρf = inf{ρ > 0 :

|f(z)| ≤ Aeb|z|
ρ} , where A,B are positive constants. J. Hadamard proved

that for a function of order ρ as in the above definition the degree of the
polynomial in the Weirestrass theorem is at most ρ.
If we assume that the holomorphic function f has no zero on a disc of
radius r around origin, then the function log f(z) is also holomorphic and
well-defined on this disc and by applying the mean value property for this
function we obtain :

log |f(0)| = 1

2π

∫ 2π

0
log |f(reiθ)|dθ

2020 Mathematics Subject Classification. Primary 30EXX
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Now if we assume that the function f(z) has zeros a1, · · · , an in the disc
D(0, r)

Theorem 1.1. (Jensen)- If f is a holomorphic function in the disc of radius
r around origin and f(0) 6= 0 which has zeros a1, · · · , ancontained in this
disc then we have the following formula.

log |f(0)| = 1

2π

∫ 2π

0
log |f(reiθ)|dθ −

∑
j=1

log | r
aj
|

.

Making use of the Jensen formula we have stitute the above in the∫ r

0

n(t, 0)

t
dt =

1

2π

∫ 2π

0
log |f(reiθ)|dθ − log |f(0)|

Now if the order of growth of the function f according to the definition
is ρ then by the above formula we can give an asymptotic bound for the
number of zeros as the following.

n(r, 0) = O(rρ).

Also Borel generalized the above asymptotic for every complex number a
except possibly for one complex number a as the following.

lim sup
r→∞

log n(r, a)

log r
= ρ,

so far we have seen that though entire functions is not easy to deal with
as the realm of polynomials but we can still drive a good formula for the
number of zeros asymtotically.

It was Rolf Nevanlinna to do this task for further development of the
theory.

2. Birth of Nevanlinna Theory

The key idea of Nevanlinna is to use the Jensen formula for meromorphic
functions by a slight modification that make it possible to apply this formula
to these functions.
Let’s define this real function log+ x = max(log x, 0) (notice also that, this
function play an important role to define the notion of height in nonarcheme-
dian geometry which we do not want to deal with here). Using this function
Nevanlinna introduced the following three functions to measure and analyze
the behaviior of the function f . first define :

m(r, f) =
1

2π

∫ 2π

0
log+ |f(reiθ)|dθ,

which is called the mean function or proximity function and it is in fact the
average of the function f over the circle of radius r and measures how big
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the function is on the circle |z| = r. The second function is the following.

N(r, f) =

∫ r

0

n(t, f)

t
dt,

which is called the Nevanlinna counting function and n(t, f) is the number
of poles of the function f in the disc |z| ≤ t and also we assume that
f(0) 6= 0,∞.
Now we try to rewrite the Jensen formula in terms of the function log+ x.
Note that the important property of this function is log x = log+ x− log+ 1

x
and therefore we can obtain the following.

1

2π

∫ 2π

0
log |f(reiθ)|dθ =

1

2π

∫ 2π

0
log+ |f(reiθ)|dθ − 1

2π

∫ 2π

0
log+

1

|f(reiθ)
|dθ

= m(r, f)−m(r,
1

f
).

and this says us that to have the Jensen formula for meromorphic functions
as entire function we need to consider a similar sum to one that over zeros,
but this new sum is over the poles of the meromorphic function f and this is
the brilliant idea of Nevanlinna. Anyway if we apply the above formula and
recall how we substitute the sum in Jensen formula by a definite integral, in
the end we obtain the following new interpretation of Jensen formula.

log |f(0)| = m(r, f)−m(r,
1

f
) +N(r, f)−N(r,

1

f
) (2.1)

The important point about the above formula is that the left hand side is
constant even when we tend r to infinity. Nevanlinna realized this fact and
manage to define the growth of a meromorphic function as the following.
Nevanlinna characteristic function- T (r, f) = m(r, f) +N(r, f).
We can write the formula (3.1) as the following.

T (r,
1

f
) = T (r, f)− log |f(0)|, (2.2)

and this is the point where Nevanlinna theory was born. In fact the first
main theorem of Nevanlinna theory is rewriting the above formula as the
following.

Theorem 2.1. (First Main Theorem) - T (r, 1f ) = T (r, f) + O(1), where

O(1) is a bounded value.

It seems that the above theorem was obtained very easily but it has great
implications. In fact it says that the functions f likes the value 0 as much
as the value ∞.
In fact write the above theorem for every value a ∈ C as the following

Theorem 2.2. (First Main Theorem) - T (r, 1
f−a) = T (r, f) +O(1) as r →

∞.
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Let the function f be a rational function, it can be written in the form

f(z) = p(z)
q(z) , where p(z) is a degree n polynomial and q(z) is a degree m

polynomial and m ≥ n. By applying the above formula to the rational
function f(z) in the end we obtain:

T (r, f) = m log r +O(1) = O(log r).

Thus the rational functions has the growth condition T (r, f) = O(log r).
Interestingly the converse of this fact is also true, it means the following.
If a meromorphic function f has growth T (r, f) = O(log r) then this func-
tion should be a rational function. Therefore in terms of Nevanlinna theory
we can generalize this fact for polynomials that they can be characterized
by their order of growth (they have polynomially growth) to the realm of
rational functions that says that the rational functions is the exact set of
meromorphic functions with the logarithmic growth.

Theorem 2.3. (Second Main Theorem) - Assume f is a meromorphic func-
tion and a1, · · · , an is a set of complex numbers with n > 2 then we have the
following inequality

(n− 2)T (r, f) ≤
n∑
i=1

N(r, ai) +O(1).

The immediate consequence of the second main theorem of Nevanlinna
theory is Picard’s theorem. Assume that the meromorphic function f omits
the three values a, b, and c. So we have N(r, a) = N(r, b) = N(r, c) = 0 for
all r then by apply second main theorem for n = 3 we obtain:

T (r, f) ≤ O(1),

and this is contradiction since the characteristic function T (r, f) is always
unbounded. Hence a meromorphic function can omit at most two values.
I will bring interesting applications of Nevanlinna theory (two main theorem
in the above) to obtain some results in complex analysis in the next section.
To understand more about the second main theorem and the structure of
its error terms see [CY].
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Abstract. In this manuscript, we study the Sturm–Liouville problem
with conformable fractional differential operators of order α, 0.5 < α ≤ 1
and finite number of interior discontinuous conditions. The asymptotic
formulas of solutions, eigenvalues and eigenfunctions of the problem are
calculated.

1. Introduction

Sturm–Liouville equation is one of the most important problems in math-
ematics, physics and engineering. This problem arises in modeling of many
systems in vibration theory, quantum mechanics, hydrodynamic and so on
[1]. The classical Sturm–Liouville equation is a second order ordinary dif-
ferential equation of the following form:

y′′ + (λ− q(x))y = 0, 0 < x < π, (1.1)

where q(x) is the potential function and λ is a parameter. For equation
(1.1) two boundary conditions at end points are considered. Equation (1.1)
with boundary conditions are called Sturm–Liouville problems (SLP). Frac-
tional Sturm-Liouville problems are different from those usually defined in
this literature, i.e. the ordinary derivatives in a traditional Sturm-Liouville
problem are replaced with fractional derivatives or derivatives of fractional

2020 Mathematics Subject Classification. 34B20, 34B24, 34L05, 34A55, 26A33, 47A10.
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order. These types of FSLP play a significant role in various areas of science,
engineering, and mathematics [2, 3]. In this note, we study the asymptotic
form of eigenvalues and characteristic functions of conformable fractional
Sturm–Liouville problem (CFSLP).

2. Asymptotic form of solutions and eigenvalues

In this section, we give definition and some theorems of the conformable
fractional(CF) derivative such that one can found in [4]. In what follows,
we always take Dα

x = Dα.

Definition 2.1. For the function f : [0,∞)→ R, the CF derivative of f of
order α ∈ (0, 1] defined by:

Dαf(x) = lim
ε→0

f(x+ εx1−α)− f(x)

ε
,

for all x > 0, and

Dαf(0) = lim
x→0+

Dαf(x).

If f is a differentiable function, then

Dαf(x) = x1−αf ′(x).

If Dαf(x0) exists and is finite. Then the function f is α-differentiable at x0.

Definition 2.2. The conformable integral of function f of order α is defined
as:

Jαf(x) =

∫ x

0
f(s)dαs =

∫ x

0
sα−1f(s)ds, x > 0.

where, the integrals are in Riemann setting.

Let us consider the CFSLP

`αy := −DαDαy + qy = λy (2.1)

with boundary conditions

B1(y) := Dαy(0) + h y(0) = 0,

B2(y) := Dαy(π) +H y(π) = 0, (2.2)

and finite number of transmission conditions

Ui(y) := y(di+)− aiy(di−) = 0,

Vi(y) := Dαy(di+)− biDαy(di−)− ciy(di−) = 0, (2.3)

for i = 1, 2, . . . ,m − 1 and 1
2 < α ≤ 1. The parameters h, H and ai,

bi, ci, di are real numbers. We denote the problem (2.1)–(2.3) with Lα =
Lα(q(x);h;H; di). Consider the weighted inner product

〈f, g〉T :=

∫ π

0
f(t)g(t)w(t)dαt,
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where f, g ∈ Lα2 ((0, π);w) and w(t) is the weight function

w(t) =


1, 0 ≤ t < d1,
1

a1b1
, d1 < t < d2,

...
1

a1b1···am−1bm−1
, dm−1 < t ≤ π.

Note that T := L2
α((0, π);w) is a Hilbert space with the norm ‖f‖T =

〈f, f〉1/2T . Let Aα : T → T with domain

dom (Aα) =

{
f ∈ T

∣∣∣∣ f,Dαf ∈ AC
(
∪m−10 (di, di+1)

)
,

`αf ∈ Lα2 (0, π), Ui(f) = Vi(f) = 0

}
by

Aαf = `αf, f ∈ dom (Aα) .

Suppose f and g are two solutions `αf = λf , `αg = λg satisfying the jump
conditions (2.3), the modified Wronskian

Wα(f, g) = r(x)
(
f(x)Dαg(x)−Dαf(x)g(x)

)
is constant for all x ∈ [0, d1) ∪m−21 (di, di + 1) ∪ (dm−1, π]. Using the above
formula Wα(f, g)(x) = Wα(f, g)(x0), for x0 ∈ [0, d) ∪ (d, π]. So, Wα(f, g)
does not depend on x.

Lemma 2.3. The operator Aα is self-adjoint on Lα2 ((0, π);w).

Let u(x, λ) and v(x, λ) be the solutions of (2.1) with the following initial
conditions

u(0, λ) = 1, Dαu(0, λ) = −h, v(π, λ) = 1, and Dαv(π, λ) = −H,

and the jump conditions (2.3), respectively. The characteristic function is
defined by

∆(λ) := Wα(u(λ), v(λ)) = B1(v(λ)) = −w(π)B2(u(λ)).

Theorem 2.4. Let λ = ρ2 and τ := |Imρ|. For CSLP (2.1)–(2.3) as |λ| →
∞, the asymptotic forms of solutions and the characteristic function formula
are in the following forms:
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u(x, λ) =



cos
(
ρ
α
xα
)

+O
(

1
ρ

exp
(
τ
α
xα
))
, 0 ≤ x < d1,

α1 cos
(
ρ
α
xα
)

+ α′1 cos
(
ρ
α

(xα − 2dα1 )
)

+O
(

1
ρ

exp
(
τ
α
xα
))
, d1 < x < d2,

α1α2 cos ρ
(
ρ
α
xα
)

+ α′1α2 cos
(
ρ
α

(xα − 2dα1 )
)

+ α1α
′
2 cos

(
ρ
α

(xα − 2dα2 )
)

+α′1α
′
2 cos

(
ρ
α

(xα + 2dα1 − 2dα2 )
)

+O
(

1
ρ

exp
(
τ
α
xα
))
, d2 < x < d3,

...

α1α2 . . . αm−1 cos
(
ρ
α
xα
)

+

+α′1α2 . . . αm−1 cos
(
ρ
α

(xα − 2dα1 )
)

+ · · ·
+α1α2 . . . α

′
m−1 cos

(
ρ
α

(xα − 2dαm−1)
)

+

+α′1α
′
2α3...αm−1 cos

(
ρ
α

(xα + 2dα1 − 2dα2 )
)

+ · · ·
+α1 . . . α

′
j . . . α

′
k . . . αm−1 cos

(
ρ
α

(xα + 2dαj − 2dαk )
)

+α1 . . . α
′
j . . . α

′
k . . . α

′
s . . . αm−1 cos

(
ρ
α

(xα − 2dαj + 2dαk − 2dαs )
)

+ · · ·
+α′1α

′
2 . . . α

′
m−1 cos

(
ρ
α

(xα + 2(−1)m−1dα1 + 2(−1)m−2dα2 − 2dαm)
)

+O
(

1
ρ

exp
(
τ
α
xα
))
, dm−1 < x ≤ π,

where

αi =
ai + bi

2
and α′i =

ai − bi
2

, i = 1, 2, . . . ,m− 1.

Also the similar asymptotic forms hold for the solutions Dαu, v, and Dαv.
Moreover, we have

∆(λ) =ρw(π)
[
α1α2 . . . αm−1 sin

( ρ
α
πα
)

+ α′1α2 . . . αm−1 sin
( ρ
α

(πα − 2dα1 )
)

+ · · ·

+ α1α2 . . . α
′
m−1 sin

( ρ
α

(πα − 2dαm−1)
)

+ α′1α
′
2α3 . . . αm−1 sin

( ρ
α

(πα + 2dα1 − 2dα2 )
)

+ · · · + α1 . . . α
′
j . . . α

′
k . . . αm−1 sin

( ρ
α

(πα + 2dαj − 2dαk )
)

+ α1 . . . α
′
j . . . α

′
k . . . α

′
s . . . αm−1 sin

( ρ
α

(πα − 2dαj + 2dαk − 2dαs )
)

+ · · ·

+α′1α
′
2 . . . α

′
m−1 sin

( ρ
α

(πα + 2(−1)m−1dα1 + 2(−1)m−2dα2 − 2dαm)
)]

+O
(

exp
( τ
α
πα
))

.

Theorem 2.5. Let λn = ρ2n be the eigenvalues of the problem Lα, then we
have the following asymptotic formula

ρn = απ1−αn+O(1) as n→∞.
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Abstract. In this manuscript, we study the inverse problem for Dirac
operators with discontinuity conditions inside an interval. It is shown
that the potential functions can be uniquely determined by a part of a
set of values of eigenfunctions at an interior point and parts of one or
two sets of eigenvalues.

1. Introduction

Let us consider the Dirac operator

`[y(x)] := By′(x) + Ω(x)y(x) = λy(x) (1.1)

subject to the boundary conditions

U(y) := y1(0) cosα+ y2(0) sinα = 0,

V (y) := y1(π) cosβ + y2(π) sinβ = 0, (1.2)

and the jump conditions

C(y) := y(d+ 0) = Ay(d− 0), (1.3)

where x ∈ I := [0, d) ∪ (d, π], B =

(
0 1
−1 0

)
, Ω(x) =

(
p(x) q(x)
q(x) −p(x)

)
,
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y(x) =
(
y1(x), y2(x)

)T
, and A =

(
a 0
0 1

a

)
.

In this paper, the functions p(x) and q(x) are real valued in L2(0, π),
a ∈ R− {0}, α, β ∈ [0, π) and λ is a spectral parameter. For simplicity we
use L = L(Ω(x);α;β; d) for the above system of equation. It is easy to see
that the operator L is a self-adjoint operator. Indeed the operator L has a
discrete spectrum consisting simple and real eigenvalues λn, for n ∈ Z.

In the paper [1], Amirov study the direct and inverse problems for Dirac
operators with discontinuities inside an interval. Furthermore, direct or
inverse spectral problems for Dirac operators were extensively studied in
[4], and the references therein. In this manuscript, we study the inverse
problem for Dirac differential operators with discontinuity conditions. It is
shown that the potential functions can be uniquely determined by a part of
a set of values of eigenfunctions at an interior point and parts of one or two
sets of eigenvalues.

2. Preliminaries

Let the functions u(., λ) : I → R2 be

Bu′(x) + Ω(x)u(x) = λu(x)

u1(0) = sinα, u2(0) = − cosα.

with the jump conditions (1.3) where u(x, λ) = (u1(x, λ), u2(x, λ))T . It is
shown in [2, 3] that there exit kernels K(x, t) = (Kij(x, t)

2
i,j=1) with entire

continuously differentiable on 0 ≤ t ≤ x < d such that the solution u(x, λ)
is

u(x, λ) = u◦(x, λ) +

∫ x

0
K(x, t)u◦(t, λ)dt (2.1)

Here u◦(x, λ) =
(
u◦1(x, λ), u◦2(x, λ)

)T
. It is easy to check that the

following functions are solutions of (1.1) with Ω(x) = 0,

u◦1(x, λ) =

{
sin(λx+ α), 0 ≤ x < d,

a+ sin(λx+ α) + a− sin(λ(2d− x) + α), d < x ≤ π.

u◦2(x, λ) =

{
− cos(λx+ α), 0 ≤ x < d,

−a+ cos(λx+ α) + a− cos(λ(2d− x) + α), d < x ≤ π.

where a+ = 1
2

(
a+ 1

a

)
, and a− = 1

2

(
a− 1

a

)
. The characteristic function for(

u◦1(x, λ), u◦2(x, λ)
)T

is

∆◦(λ) := a+ sin(λπ + α− β) + a− sin(λ(2d− π) + α+ β).

The roots of the entire function ∆◦(λ) are simple and real. The roots of
∆◦(λ) is

λ◦n = n+Mn

such that supnMn < M <∞.
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Suppose v(x, λ) =
(
v1(x, λ), v2(x, λ)

)T
be the solution of (1.1) with

the initial conditions

v(π, λ) =
(

sinβ,− cosβ
)T
.

By changing x to π − x one can obtain the similar form of (1.2) for the
solution v(x, λ) on the interval (d, π].

We define the characteristic function for the operator L of the form

∆(λ) := 〈u(x, λ), v(x, λ)〉 =

∫ π

0
(u1v̄1 + u2v̄2)dx

The characteristic function ∆(λ) is independent of x. It flows from (2.1)
and the same form of (2.1) for v(x, λ) on the jump point x = d, so we have

∆(λ) = ∆◦(λ) +O

(
exp(|τ |π)

λ

)
where τ = |Imλ|. The zeros of ∆(λ) are the eigenvalues of L and hence it has
only simple and real zeros λn. We denote by yn(x) = (yn,1(x), yn,2(x))T , n ∈
Z, the corresponding eigenfunctions.

Theorem 2.1. The corresponding eigenvalues {λn} of the boundary value
problem L admit the following asymptotic form as n→∞:

λn = n+O(1).

Suppose v(x, λ) =
(
v1(x, λ), v2(x, λ)

)T
be the solution of (1.1) with

the initial conditions

v(π, λ) =
(

sinβ,− cosβ
)T
.

By changing x to π − x one can obtain the similar form of (1.2) for the
solution v(x, λ) on the interval (d, π]. Define the characteristic function for
the operator L of the form

∆(λ) := 〈u(x, λ), v(x, λ)〉.

The characteristic function ∆(λ) is independent of x. It flows from (2.1)
and the same form of (2.1) for v(x, λ) on the jump point x = d, so we have

∆(λ) = ∆◦(λ) +O

(
exp(|τ |π)

λ

)
where τ = |Imλ|. The zeros of ∆(λ) are the eigenvalues of L and hence it has
only simple and real zeros λn. We denote by yn(x) = (yn,1(x), yn,2(x))T , n ∈
Z, the corresponding eigenfunctions.

Theorem 2.2. The corresponding eigenvalues {λn} of the boundary value
problem L admit the following asymptotic form as n→∞:

λn = n+O(1).
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3. inverse problem

Let us introduce a second Dirac operator L̃ = L(Ω̃(x);α;β; d) here

Ω̃(x) =

(
p̃(x) q̃(x)
q̃(x) −p̃(x)

)
with a real valued function p̃(x), q̃(x) ∈ L2(0, π). The eigenvalues and

the corresponding eigenfunctions of L̃ are denoted by λ̃n and ỹn(x) =
(ỹn,1(x), ỹn,2(x))T (n ∈ Z), respectively.

Theorem 3.1. If λn = λ̃n, 〈yn, ỹn〉d−0 = 0 for any n ∈ Z and d ≤ π
2 then

p(x) = p̃(x), q(x) = q̃(x) a.e on the [0, d).

Remark 3.2. We can easily obtain if y, z be the solution of (1.1) and satisfy
the jump conditions (1.3) and 〈y, z〉(a−0) = 0 then 〈y, z〉(a+0) = 0

Corollary 3.3. Let d ∈ (π2 , π) be a jump point. Let λn = λ̃n, and 〈yn, ỹn〉(d−0) =

0, for each n ∈ Z. Then Ω(x) = Ω̃(x) almost everywhere on (d, π].

Remark 3.4. For d = π
2 from Theorems 3.1 and 3.3, we get Ω(x) = Ω̃(x)

almost everywhere on [0, π].

Theorem 3.5. Let d ∈ (π2 , π] be a jump point and σ > 2a
π − 1. Let

λn = λ̃n, µl(n) = µ̃l(n), and 〈yn, ỹn〉(d−0) = 0,

for each n ∈ Z. Then Ω(x) = Ω̃(x) almost everywhere on [0, d) ∪ (d, π].

Corollary 3.6. Let d ∈ (0, π2 ] be a jump point, fix b ∈ (0, d] and σ1 >
2b
π .

Let λm(n) = λ̃m(n) 〈yn, ỹn〉d−0 = 0, for each n ∈ Z. Then Ω(x) = Ω̃(x)
almost everywhere on [0, π].

Let r(n) be a subsequence of natural numbers such that

r(n) =
n

σ2
(1 + ε2n), 0 < σ2 ≤ 1, ε2n → 0

Corollary 3.7. Let d ∈ (π2 , π) be a jump point, fix σ > 2d
π − 1 and σ2 >

2− 2d
π . If for each n ∈ N

λn = λ̃n, µl(n) = µ̃l(n), 〈yr(n), ỹr(n)〉(d−0) = 0,

then Ω(x) = Ω̃(x) almost everywhere on [0, π].
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Abstract. In this paper, we prove some existence results on positive
solution for a class of nonlocal elliptic systems in bounded domains. We
employ the method of sub-super solutions to establish our results.

1. Introduction

In this article, we mainly consider the existence of a positive solution of
the following singular elliptic system

−M1

(∫
Ω

|∇u|pdx
)

∆pu = λa(x)f(v)− u−α in Ω,

−M2

(∫
Ω

|∇v|pdx
)

∆pv = λb(x)g(u)− v−α in Ω,

u = v = 0 on ∂Ω,

(1.1)

where λ is a positive parameter, ∆pu = div(|∇u|p−2∇u), p > 1,Mi : R+
0 →

R+, i = 1, 2, are two continuous and increasing functions, Ω ⊂ Rn some
for n > 1, is a bounded domain with smooth boundary ∂Ω, 0 < α < 1,
and f, g : [0,∞] → R are continuous, nondecreasing functions which are
asymptotically p-linear at ∞. We prove the existence of a positive solution
for a certain range of λ.

We consider problem (1.1) under the following assumptions.
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(H1) There exist σ1 > 0, k1 > 0 and s1 > 1 such that

f(s) ≥ σ1s
p−1 − k1

for every s ∈ [0, s1]
and that there exist σ2 > 0, k2 > 0 and s2 > 1 such that

g(s) ≥ σ2s
p−1 − k2

for every s ∈ [0, s2],

(H2) For all M > 0 , lims→+∞
f(M [g(s)]

1
p−1 )

sp−1 = σ for some σ > 0.

(H3) a, b : Ω→ (0,∞) are continuous functions such that a1 = minx∈Ω a(x),
b1 = minx∈Ω b(x), a2 = maxx∈Ω a(x) and b2 = maxx∈Ωb(x).

(H4) There exists τ ∈ R such that for each M > 0, f(Ms) ≤ M τf(s) for
s� 1.

(H5) Mi : R+
0 → R+, i = 1, 2, are two continuous and increasing functions

and 0 < mi ≤Mi(t) ≤ mi,∞ for all t ∈ R+
0 , where R+

0 := [0,+∞).

System (1.1) is related to the stationary problem of a model introduced by
Kirchhoff [4].Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−
(P0

h
+
E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0, (1.2)

where ρ, ρ0, h, E are all constants. This equation is an extension of the
classical D’Alembert’s wave equation. A distinguishing feature of equa-

tion (1.2) is that the equations a nonlocal coefficient
P0

h
+

E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx
which depends on the average

1

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx ; hence the equation is no

longer a pointwise identity. Nonlocal problems can be used for modeling,
for example, physical and biological systems for which u describes a process
which depends on the average of itself, such as the population density. Let
F (u) := λa(x)f(u) − u−α. The case when F (0) < 0 (and finite) is referred
to in the literature as a semipositone problem. Here we consider the more
challenging case when limu→0+ F (u) = −∞, which has received attention
very recently and is referred to as an infinite semipositone problem. In this
note, we study the existence of positive solutions for Kirchhoff type system
(1.1). Our result improves the previous one introduced by G.Afrouzi et al.
[1] in which M1(t) = M2(t) ≡ 1. We shall establish our an existence result
via the method of sub and supersolutions.

Now, we give the definitions of sub- and super-solutions of (1.1).

Definition 1.1. We say that (ψ1, ψ2) (resp. (z1, z2)) in (W 1,p(Ω)∩C(Ω),W 1,p(Ω)∩
C(Ω)) are called a subsolution (resp. a supersolution) of (1.1), if ψi (i = 1, 2)
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satisfy
M1

( ∫
Ω
|∇ψ1|pdx

) ∫
Ω
|∇ψ1(x)|p−2∇ψ1 · ∇w1dx ≤

∫
Ω

(
λa(x)f(ψ2)− ψ−α

1

)
w1(x)dx

M2

( ∫
Ω
|∇ψ2|pdx

) ∫
Ω
|∇ψ2(x)|p−2∇ψ2(x) · ∇w2dx ≤

∫
Ω

(
λb(x)g(ψ1)− ψ−α

2

)
w2(x)dx

ψ1, ψ2 > 0 in Ω,
ψ1 = ψ2 = 0 on ∂Ω

(1.3)(
resp. zi (i = 1, 2) satisfy:

M1

( ∫
Ω |∇z1|pdx

) ∫
Ω |∇z1|p−2∇z1 · ∇w1(x)dx ≥

∫
Ω

(
λa(x)f(z2)− z−α1

)
w1(x)dx

M2

( ∫
Ω |∇z2|pdx

) ∫
Ω |∇z2|p−2∇z2 · ∇w2(x)dx ≥

∫
Ω

(
λb(x)g(z1)− z−α2

)
w2(x)dx

z1, z2 > 0 in Ω,

z1 = z2 = 0 on ∂Ω

)
(1.4)

for all non-negative test functions wi(i = 1, 2) ∈ W , where W = {ξ ∈
C∞0 (Ω) : ξ ≥ 0 in Ω}.

2. Main result

In this paper, we denote W 1,r
0 (Ω), the completion of C∞0 (Ω), with respect

to the norm

‖u‖r =

(∫
Ω
|∇u|r dx

) 1
r

.

In order to precisely state our main result we first consider the following
eigenvalue problem for the r-Laplace operator −∆ru, see [5]:{

−∆ru = λ|u|r−2u in Ω,
u = 0 on ∂Ω.

(2.1)

Let φ1,r ∈ C1(Ω) be the eigenfunction corresponding to the first eigenvalue
λ1,r of (2.1) such that φ1,r > 0 in Ω and ‖φ1,r‖∞ = 1. It can be shown that
∂φ1,r
∂η < 0 on ∂Ω and hence, depending on Ω, there exist positive constants

m, δ, σ such that {
|∇φ1,r|r − λ1,rφ

r
1,r ≥ m on Ωδ,

φ1,r ≥ σ on x ∈ Ω\Ωδ,
(2.2)

where Ωδ := {x ∈ Ω : d(x, ∂Ω) ≤ δ}.
We will also consider the unique solution er ∈ W 1,r

0 (Ω) of the boundary
value problem {

−∆rer = 1 in Ω,
er = 0 on ∂Ω

(2.3)

to discuss our result. It is known that er > 0 in Ω and ∂er
∂η < 0 on ∂Ω.
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Our main result is given by the following theorem.

Theorem 2.1. Assume the conditions (H1)−(H5) are satisfied. Then there
exist positive constants s∗0(σ,Ω), J∗(Ω), λ∗, and λ∗∗(> λ∗) such that if min

{s1, s2} ≥ s∗0 and min{a1,b1}min{σ1,σ2}

(σ)
p−1
p−1+τ

≥ J∗, problem (1.1) has a positive

solution for λ ∈ [λ∗, λ∗∗].

A key role in our arguments will be played by the following auxiliary
result. Its Proof is similar to those presented in [2], the reader can consult
further the papers [3].

Lemma 2.2. Assume that M : R+ → R+ is a continuous and increasing
function satisfying

M(t) ≥M0 > 0 for all t ∈ R+.

If the functions u, v ∈W 1,p
0 (Ω) satisfies

M

(∫
Ω

|∇u|p dx
)∫

Ω

|∇u|p−2∇u ·∇ϕdx ≤M
(∫

Ω

|∇v|p dx
)∫

Ω

|∇v|p−2∇v ·∇ϕdx

(2.4)

for all ϕ ∈W 1,p
0 (Ω), ϕ ≥ 0, then u ≤ v in Ω.

From Lemma (2.2) we can establish the basic principle of the sub- and su-
persolutions method for nonlocal systems. Indeed, we consider the following
nonlocal system

−M1

(∫
Ω
|∇u|pdx

)
∆pu = h(x, u, v) in Ω,

−M2

(∫
Ω
|∇v|qdx

)
∆qv = k(x, u, v) in Ω,

u = v = 0 on x ∈ ∂Ω,

(2.5)

where Ω is a bounded smooth domain of RN and h, k : Ω × R × R → R
satisfy the following conditions

(HK1) h(x, s, t) and k(x, s, t) are Carathéodory functions and they are bounded
if s, t belong to bounded sets.

(KH2) There exists a function g : R→ R being continuous, nondecreasing,

with g(0) = 0, 0 ≤ g(s) ≤ C(1 + |s|min{p,q}−1) for some C > 0,
and applications s 7→ h(x, s, t) + g(s) and t 7→ k(x, s, t) + g(t) are
nondecreasing, for a.e. x ∈ Ω.

If u, v ∈ L∞(Ω), with u(x) ≤ v(x) for a.e. x ∈ Ω, we denote by [u, v] the
set {w ∈ L∞(Ω) : u(x) ≤ w(x) ≤ v(x) for a.e. x ∈ Ω}.

Proposition 2.3. Let M1,M2 : R+
0 → R+ be two functions satisfying the

condition (H1). Assume that the functions h, k satisfy the conditions (HK1)
and (HK2). Assume that (u, v), (u, v), are respectively, a weak subsolution
and a weak supersolution of system (2.5) with u(x) ≤ u(x) and v(x) ≤ v(x)
for a.e. x ∈ Ω. Then there exists a minimal (u∗, v∗) (and, respectively, a
maximal (u∗, v∗)) weak solution for system (2.5) in the set [u, u]× [v, v]. In
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particular, every weak solution (u, v) ∈ [u, u]× [v, v] of system (2.5) satisfies
u∗(x) ≤ u(x) ≤ u∗(x) and v∗(x) ≤ v(x) ≤ v∗(x) for a.e. x ∈ Ω.
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Abstract. In the present paper, Legendre polynomials are effectively
implemented in pricing discrete double barrier options which are com-
monly done through recursive solving Black-Scholes PDEs in the mon-
itoring intervals. By using orthogonal projection based on Legendre
polynomials, we could obtain an operational matrix to approximate the
price of the option.

1. Introduction

A knock-out double barrier option is an option that is deactivated when
the price of the underlying asset touches each of the two predetermined bar-
riers before the expiry date at monitoring dates. Various approaches have
been proposed for pricing barrier options. An analytical method is derived
by Fusai et al. in [1] based on z-transform. The method of finite element
is used by Golbabai et al.[2]. Milev and Tagliani presented a numerical
algorithm for pricing discrete double barrier options [3]. Farnoosh et al.
[4, 5] provide methods for pricing discretely monitored (single or double)
barrier options that work even for the case of time-dependent parameters.
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In this paper, Legendre Polynomials is effectively implemented as an or-
thogonal basis for the projection method that causes to operational matrix
form. Computational time is almost fixed and not affected by the number
of monitoring dates. According to the Black-Scholes framework, the price of
discretely monitored double barrier call option as a function of stock price s
at time t ∈ (tm, tm+1), namely C (s, t,m), is obtained from forward solving
the following partial differential equations with the initial conditions[6]:

− ∂C
∂t

+ µs
∂C
∂s

+
1

2
σ2s2

∂2C
∂s2
− rC = 0, (1.1)

C (s, t0, 0) = (s− E)1(max(E,L)≤s≤U) ,

C (s, tm,m) = C (s, tm,m− 1)1(L≤s≤U); m = 1, 2, ...,M − 1 .

The constant coefficients µ and σ are risk-free rate and volatility respectively.
Also, the constants E, L, and U are exercise price, lower and upper barrier
respectively. In the following, two changes of variables are performed. At
first, the function P (z, t,m) is defined as P (z, t,m) := C(s, t,m) where z =

ln
(
s
L

)
, E∗ = ln

(
E
L

)
, µ∗ = µ− σ2

2 , U∗ = ln
(
U
L

)
, δ = max {E∗, 0}. Then the

partial differential equation (1.1) and its initial conditions are changed into:

− Pt + µ∗Pz +
σ2

2
Pzz − µP = 0, (1.2)

P (z, t0, 0) = L
(
ez − eE∗

)
1(δ≤z≤U∗),

P (z, tm,m) = P (z, tm,m− 1)1(0≤z≤U∗) ; m = 1, 2, ...,M − 1 .

As a second step, the following transformation is applied:

P (z, tm,m) = eαz+βtg(z, t,m),

where α = −µ∗

σ2 ; c2 = σ2

2 ; β = αµ∗ + α2 σ2

2 − µ.
Therefore, the partial differential equation (1.2) and its initial conditions
are led to:

− gt + c2gzz = 0, (1.3)

g (z, t0, 0) = Le−αz
(
ez − eE∗

)
1(δ≤z≤U∗),

g (z, tm,m) = g (z, tm,m− 1)1(0≤z≤U∗); m = 1, ...,M − 1.

The resulting expressions in (1.3) are known as heat equations. Analytical
solutions to the heat equations at the monitoring dates of equal distances
τ = T

M or equivalently tm = mτ , are denoted by fm (z) := g(z, tm,m − 1)
and evaluated as follows, see e.g [7];

f0 (z) = Le−αz
(
ez − eE∗

)
1(δ≤z≤U∗), (1.4)

fm (z) = K(fm−1(z)), m = 2, 3, ...,M − 1, (1.5)

where the compact operator K : L2([0, U∗]) → L2([0, U∗]) is defined as
follows:

K (f) (z) :=

∫ U∗

0

1√
4πc2τ

e−
(z−ξ)2

4c2τ f(ξ)dξ. (1.6)
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According to the above stages, the price of the knock-out discrete double
barrier European call Option at expiry date T is evaluated by the following
formula:

C (s0, T,M − 1) = e(αz0+βT )fM−1 (z0), (1.7)

where z0 = ln
(
s0
L

)
.

2. Implementation of Legendre Polynomials

pi(x) = xpi−1(x) +

(
i

i+ 1

)
(xpi−1(x)− pi−2(x)) ,

where p0(x) = 1, and p1(x) = x. The {pi(x)}∞i=0 is an orthogonal ba-

sis for L2[−1, 1]. Now, we define p̃i(x) :=
√

2i+1
U∗ pi

(
U∗

2 x+ U∗

2

)
. These

functions constitute an orthonormal basis for L2[0, U∗]. Consider Πn =
span {p̃i(x)}ni=0 be the space of all polynomials with degrees less than or
equal to n and also Pn : L2[0, U∗]→ Πn be orthogonal projection operator,
that is defined as follows:

∀f ∈ L2[0, U∗] Pn (f) =

n∑
i=0

〈f, p̃i(x)〉p̃i(x), (2.1)

where 〈 . , . 〉 indicates the usual inner product.

Now, we define f̃m,n = PnK
(
f̃m−1,n

)
= (PnK)m (f0) , m ≥ 2 where

(PnK)(f) = Pn (K(f)). Since the continuous projection operators Pn con-
verge pointwise to identity operator I, then operator PnK is also a compact
operator and it could be shown that

lim
n→∞

‖(PnK)m −Km‖ = 0. (2.2)

Since, f̃m,n ∈ Πn for m ≥ 1, we can write

f̃m,n =
n∑
i=0

amip̃i(z) = Φn(x)Fm,

where Fm = [am0, am1, · · · , am2j ]
′ and Φn = [p̃0(x), p̃1(x), · · · , p̃n(x)]′. So

we obtain

f̃m,n = (PnK)m−1
(
f̃1,n

)
. (2.3)

Because Πn is a finite-dimensional linear space, so the linear operator PnK
on Πn could be considered as a (n+ 1)× (n+ 1) matrix K. Consequently,
equation 2.3 can be written as the following matrix operator form:

f̃m,n = Φ′nK
m−1F1. (2.4)

For computation of the option price by 2.4, it is enough to calculate the
matrix operator K and the vector F1:

F1 = [a10, a11, · · · , a1n]′, K = (kij)(n+1)×(n+1),
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a1i =

∫ U∗

0

∫ U∗

δ
p̃i(η)κ(η − ξ, τ)f0(ξ)dξdη , 0 ≤ i ≤ n,

kij =

∫ U∗

0

∫ U∗

0
p̃i(η)p̃j(ξ)κ(η − ξ, τ)dξdη ,

where κ(z, t) = 1√
4πc2t

e−
z2

4c2t . The matrix form of relation 2.4 implies that

the computational time of the presented algorithm be nearly fixed when
monitoring dates increase. The complexity of our algorithm is O(n2) that
does not depend on the number of monitoring dates.

3. Numerical Result

Here, price of a double knock-out barrier option with T = 0.5, µ = 0.05,
σ = 0.25, s0 = 100 E = 100, U = 120 and different level of lower barrier L is
approximated by presented method. The numerical results are reported and
compared with some other ones. The CPU time of the Presented method
does not increase significantly when the number of monitoring dates in-
creases.

M L Legendre(n = 16) Quad-K30 AMM-8 Benchmark
80 2.4499 2.4499 2.4499 2.4499
90 2.2028 2.2028 2.2027 2.2028

5 95 1.6831 1.6831 1.6830 1.6831
99 1.0811 1.0811 1.0811 1.0811

99.9 0.9432 0.9432 0.9433 0.9432
CPU 0.52 s

80 1.9420 1.9420 1.9419 1.9420
90 1.5354 1.5354 1.5353 1.5354

25 95 0.8668 0.8668 0.8668 0.8668
99 0.2931 0.2931 0.2932 0.2931

99.9 0.2023 0.2023 0.2024 0.2023
CPU 0.54 s

Table 1: Double knock-out barrier option: T = 0.5, µ = 0.05, σ = 0.25,
s0 = 100, E = 100.
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Abstract. Here, by using variational methods, the multiplicity of weak
solutions for a system of problems including the anisotropic−→p (x)-Laplacian
operator is proved.

1. Introduction

Anisotropic −→p −Laplacian operator

∆−→p (x)u =

N∑
i=1

∂

∂xi

(
| ∂u
∂xi
|pi(x)−2 ∂u

∂xi

)
,

−→p = (p1, · · · , pN ), with a complex structure that behaves differently in dif-
ferent directions of space, has been the focus of many authors in recent years
[?, ?]. This operator is used in equations that descriptions electromagnetic
fields, the plasma physics and elastic mechanics.

2020 Mathematics Subject Classification. 34B15; 35B38; 58E05
Key words and phrases. −→p (x)−Laplacian operator, Neumann elliptic system, varia-

tional methods.
∗ Speaker.
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In this paper, using variational methods, we examine the existence and
multiplicity of weak solutions for anisotropic system
−∆−→p (x)u+

N∑
i=1

a1(x)|u|pi(x)−2u = λFu(x, u, v) + µGu(x, u, v) in Ω,

−∆−→p (x)v +
N∑
i=1

a2(x)|v|pi(x)−2v = λFv(x, u, v) + µGv(x, u, v) in Ω,

∂u
∂ν = ∂v

∂ν = 0 On ∂Ω,
(1.1)

where Ω ⊂ RN , N ≥ 2, is a non-empty bounded open set with a boundary
∂Ω of class C1, ν is the outer unit normal to ∂Ω. −→p = (p1, · · · , pN ) where for
i = 1, · · · , N , pis are continuous functions on Ω with pi(x) ≥ 2 for all x ∈ Ω.
Also λ, µ are positive parameters, Fξ, Gξ denote the partial derivative of
F,G with respect to ξ and F (x, ., .), G(x, ., .) are continuously differentiable
in R2 for a.e. x ∈ Ω. Moreover, for i = 1, 2, functions ai(x) are true in the
following condition:

(A0)

ai ∈ L∞(Ω), a0
i := ess inf

x∈Ω
ai(x) > 0.

If T : Ω× R2 → R then, we suppose following assumption on T :
(T0) T : Ω×R2 → R is measurable in Ω for all (s, t) ∈ R2 and T (x, ., .) is

C1 with respect to (s, t) ∈ R2 for a.e. x ∈ Ω and for each θ > 0,

sup
|(s,t)|≤θ

|Tu(., s, t)|, sup
|(s,t)|≤θ

|Tv(., s, t)| ∈ L1(Ω).

2. Preliminaries and notations

We start by introducing the anisotropic variable exponent Sobolev
spaces. We consider the vectorial function−→p : Ω→ RN with−→p (x) =
(p1(x), · · · , pN (x)) that pi ∈ C+(Ω) for all i ∈ {1, · · · , N} . We set

p− := inf
x∈Ω

p(x), p+ := sup
x∈Ω

p(x),

p = min
{
p−i : i = 1, · · · , N

}
, p = max

{
p+
i : i = 1, · · · , N

}
.

The anisotropic variable exponent Sobolev space is defined as follows

W 1,−→p (x)(Ω) =

{
u ∈ Lpi(x)(Ω) :

∂u

∂xi
∈ Lpi(x)(Ω) for i = 1, · · · , N

}
,

with the norm ‖u‖−→p := ‖u‖W 1,−→p (x)(Ω) =
∑N

i=1

(
‖ ∂u∂xi ‖pi + ‖u‖pi

)
.

The space (W 1,−→p (x)(Ω), ‖ · ‖−→p ) is a separable and reflexive Banach
space. We consider the product space

X := W 1,−→p (x)(Ω)×W 1,−→p (x)(Ω)
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which is equipped with the norm ‖(u, v)‖ := ‖u‖−→p + ‖v‖−→p . Define
the functionals Φ,Ψλ,µ : X → R, by

Φ(u, v) :=
N∑
i=1

(∫
Ω

1

pi(x)
| ∂u
∂xi
|pi(x)dx+

∫
Ω

a1(x)

pi(x)
|u|pi(x)dx

)

+
N∑
i=1

(∫
Ω

1

pi(x)
| ∂v
∂xi
|pi(x)dx+

∫
Ω

a2(x)

pi(x)
|v|pi(x)dx

)
, (2.1)

and

Ψλ,µ(u, v) :=

∫
Ω
F (x, u, v)dx+

µ

λ

∫
Ω
G(x, u, v)dx, (2.2)

for any (u, v) ∈ X. set Iλ,µ = Φ(u, v) − λΨλ,µ(u, v). To prove the
main theorem, we need the following lemma which we have proved
in this article.

Lemma 2.1. set U(x) =
∑N

i=1

(∫
Ω |

∂u
∂xi
|pi(x)dx+

∫
Ω a(x)|u|pi(x)dx

)
for all u ∈W 1,−→p (x)(Ω). So, there exist constants β1, β2 > 0 that

(i) ‖u‖−→p ≥ 1 =⇒ β1‖u‖
p
−→p ≤ U(x) ≤ β2‖u‖p−→p ,

(ii) ‖u‖−→p ≤ 1 =⇒ β1‖u‖p−→p ≤ U(x) ≤ β2‖u‖
p
−→p .

3. main result

In the following, we will state the main theorem.

Theorem 3.1. Suppose that
(A1) for each (x, s, t) ∈ Ω× R+ × R+, F (x, s, t) ≥ 0;
(A2) there exist α ∈ L∞(Ω), α(x) > 0 a.e. in Ω and γ1, γ2 ∈ C+ with

0 < γ1(x) ≤ γ+
1 < γ+

2 <
p

2 such that

|F (x, s, t)|, |G(x, s, t)| ≤ α(x)
(

1 + |s|γ1(x) + |t|γ2(x)
)

for a.e. x ∈ Ω and each (s, t) ∈ R2;
(A3) there exist two positive constants δ and τ such that

c
p

0C
2
pN

p(a0
1 + a0

2)meas(Ω) min{δp, δp} > min{1, a0
1, a

0
2}τp;

(A4)∫
Ω sup|(s,t)|≤τ F (x, s, t)dx

τp
<

pmin{1, a0
1, a

0
2}
∫

Ω F (x, δ, δ)dx

pC
p

0C
2
pN

p(‖a1‖∞ + ‖a2‖∞)meas(Ω) max {δp, δp}
;

so, for each λ ∈ Λδ,τ , given by]
(‖a1‖∞ + ‖a2‖∞)Nmeas(Ω) max

{
δp, δp

}
p
∫

Ω F (x, δ, δ)dx
,

min{1, a0
1, a

0
2}τp

pC
p

0C
2
pN

p−1
∫

Ω sup|(s,t)|≤τ F (x, s, t)dx

[
,

(3.1)
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and for every G : Ω × R2 → R, there is ε > 0 given by ε =
min{Aτ ,Bδ}, where

Aτ =
min{1, a0

1, a
0
2}τp − λpC

p

0C
2
pN

p−1
∫

Ω sup|(s,t)|≤τ F (x, s, t)dx

pC
p

0C
2
pN

p−1
∫

Ω sup|(s,t)|≤τG(x, s, t)dx
,

Bδ =
λp
∫

Ω F (x, δ, δ)dx−N(‖a1‖∞ + ‖a2‖∞)meas(Ω) max
{
δp, δp

}
p
∫

ΩG(x, δ, δ)dx
,

such that for each µ ∈ [0, ε[ , the problem (??) admits at least three
distinct weak solutions.

Proof. Using the critical points theorem of Bonanno and Marano[?],
we prove the existence at least three distinct weak solutions for sys-
tem (??). we showed that Φ is coercive and functions Φ and Ψ hold
in the conditions of the three critical points theorem of Bonanno,
that’s mean,
• Φ,Ψλ,µ ∈ C1(X,R) [?, Lemma 3.4].
• The functional Φ is sequentially weakly lower semicontinuous.
• Ψ′λ,µ : X → X∗ is a compact operator.

• Φ′ admits a continuous inverse on X∗.
In the following, for δ > 0, we pick w(x) := (δ, δ) for any x ∈ Ω and

r :=
min

{
1, a0

1, a
0
2

}
pC2

pN
p−1

(
τ

C0

)p
.

We show that for λ ∈

]
Φ(w)

Ψ(w)
,

r

sup(u,v)∈Φ−1(]−∞,r[) Ψ(u, v)

[
,

the functional Iλ,µ is coercive. Therefore, all the conditions of Bo-
nanno’s theorem are satisfied and we can conclude that the func-
tional Iλ,µ admits at least three critical points in X which are the
weak solutions of system (??). �
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Abstract. In this paper, we introduce the concept of the generalized
C-linear s-functional inequalities and we investigate Hyers-Ulam sta-
bility by using the fixed point method of ternary fuzzy derivation and
ternary Jordan fuzzy derivation for the C-linear s-functional inequalities
on ternary fuzzy Banach algebra.

1. Introduction

The stability problem of functional equations originated from the question
of Ulam in 1940 concerning the stability of group homomorphisms. Hyers
in 1941 gave the first affirmative partial answer to the question of Ulam for
Banach spaces. Th. M. Rassias in 1978 proved the Hyers-Ulam stability by
changing of Hyers’ theorem control function with θ(‖x‖P + ‖y‖p) for linear
mappings and J. M. Rassias in 1982, investigated the Hyers-Ulam-Rassias
stability by replacing of θ(‖x‖P +‖y‖p) with θ(‖x‖P .‖y‖p). Finally, Găvruta
in 1994, generalized the Rassias’ result.
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Key words and phrases. C-linear s-functional inequalities, ternary fuzzy derivation,

ternary Jordan fuzzy derivation, Hyers-Ulam stability.
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In the follwing, we use the definition of fuzzy normed spaces to investigate
a fuzzy version of the Hyers-Ulam stability for the functional equation in
the fuzzy normed algebra.

Definition 1.1. [1, 2] Let X be a vector space. A function f : X×R→ [0, 1]
is called a fuzzy norm on X if (1): N(x, t) = 0 for all x ∈ X and t ∈ R with
t ≤ 0;
(2): x = 0 if and only if N(x, t) = 1 for all x ∈ X and t ≥ 0;
(3): N(cx, t) = N(x, t

|c|) for all x ∈ X and c 6= 0;

(4): N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)} for all x, y ∈ X and t, s ∈ R;
(5): N(x,.) is a decreasing function of R and limt→∞N(x, t) = 1 for all
x ∈ X and t ∈ R;

Definition 1.2. [1, 2] Let (X,N) be a fuzzy normed vector space. A se-
quence {xn} in X is said to be convergent to a point x ∈ X or converges if
there exists x ∈ X such that

lim
t→∞

N(xn − x, t) = 1

for all t > 0 In this case, x is called the limit of the sequence {xn} and we
denote it by N − limt→∞ xn = x.

Definition 1.3. [1, 2] Let (X,N) be a fuzzy normed vector space. A se-
quence {xn} in X is called Cauchy if, for each ε > 0 and t > 0 there exists
an n0 ∈ N such that for all n ≥ n0 and all p > 0 we have is said to be
convergent to a point x ∈ X or converges if there exists x ∈ X such that

N(xn+p − xn, t) > 1− ε.

It is well known that every convergent sequence in a fuzzy normed vector
space is a Cauchy sequence. If each Cauchy sequence is convergent, then
the fuzzy norm is said to be complete and the fuzzy normed vector space is
called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X
and Y is continuous at a point x0 ∈ X if, for each sequence {Xn} converging
to x0 ∈ X, the sequence f(xn) converges to f(x0). If f : X → Y is continuous
at each x ∈ X, then f : X → Y is said to be continuous on X. Consider the
generalized C-linear s-functional equation∥∥∥f(λ(x+ y + z)

)
− λf(x)− λf(y)− λf(z)

∥∥∥ ≤∥∥∥s(f(λ(x+ y + z)
)

+ λf(x)− f
(
λ(x+ y)

)
− f

(
λ(y + z)

))∥∥∥ (1.1)

where s is a fixed nonzero complex number with |s| < 1.

Definition 1.4. [2, 3] Let (X,N) and (Y,N ′) be two ternary fuzzy normed
algebras. A C-linear mapping D : (X,N)→ (X,N) is called a ternary fuzzy
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derivation if
(1) ternary derivation if

D
(

[x, y, z]
)

= [D(x), y, z] + [x,D(y), z] + [x, y,D(z)]

(2) ternary Jordan derivation if

D
(

[x, x, x]
)

= [D(x), x, x] + [x,D(x), x] + [x, x,D(x)]

for all x, y, z ∈ A.

In this paper, we solve (1.1) and show that a function which satisfies (1.1)
is C-linear. We also prove its Hyers-Ulam stability by using the fixed point
method [4] of ternary fuzzy derivations on ternary fuzzy Banach algebras.

2. Main Results

Throughout this section, assume that X be a ternary fuzzy Banach alge-
bra. For any mapping f : X → Y , we define

∆λ(x, y, z) :=
∥∥∥f(λ(x+ y + z)

)
− λf(x)− λf(y)− λf(z)

∥∥∥ ≤∥∥∥s(f(λ(x+ y + z)
)

+ λf(x)− f
(
λ(x+ y)

)
− f

(
λ(y + z)

))∥∥∥
and

d(x, y, z) := f([x, y, z])− [f(x), y, z]− [x, f(y), z]− [x, y, f(z)]

for all x, y, z ∈ X
We need following lemma to prove the main theorems.

Lemma 2.1. If a mapping f : X → Y satisfies

f
(
λ(x+ y + z)

)
− λf(x)− λf(y)− λf(z) =

ρ
(
f
(
λ(x+ y + z)

)
+ λf(x)− f

(
λ(x+ y)

)
− f

(
λ(y + z)

)) (2.1)

for all x, y, z ∈ X, then the mapping f is additive.

In the following theorem, we prove Hyers-Ulam stability of ternary fuzzy
derivation.

Theorem 2.2. Let f : X → Y be a mapping for which there exist functions
σ : X3 → [0,∞) such that there exists an 0 < L < 1 with

σ(
x

2
,
y

2
,
z

2
) ≤ L

2
σ(x, y, z) (2.2)

NX

(
∆λ(x, y, z), t

)
≥ t

t+ σ(x, y, z)
(2.3)
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(i) : Suppose that

NX

(
d[x, y, z], t

)
≥ t

t+ σ(x, y, z)
(2.4)

for all x, y, z ∈ X. Then there exists a unique ternary fuzzy derivation
D : X → X such that

NX

(
f(x)−D(x), t

)
≥ (6− 6L)t

(6− 6L)t+ σ(x, x, 0)
(2.5)

for all x ∈ X.
(ii) : Suppose that

NX

(
d[x, x, x], t

)
≥ t

t+ σ(x, x, x)
(2.6)

for all x ∈ X. Then there exists a unique ternary Jordan fuzzy derivation
D : X → X such that

NX

(
f(x)−D(x), t

)
≥ (6− 6L)t

(6− 6L)t+ σ(x, x, 0)
(2.7)

for all x ∈ X.

In the following theorem, we prove Hyers-Ulam-Rassias stability of ternary
fuzzy derivation and ternary Jordan fuzzy derivation with condition 0 < r <
1.

Theorem 2.3. Let θ > 0 and f : X → X be a mapping such that

NX

(
∆λ(x, y, z), t

)
≥ t

t+ θ(‖x‖r + ‖y‖r + ‖z‖r) (2.8)

(i) : Suppose that

NX

(
d[x, y, z], t

)
≥ t

t+ θ(‖x‖r‖y‖r‖z‖r)
(2.9)

for all x, y, z ∈ X. Then there exists a unique ternary fuzzy derivation
D : X → X such that

NX

(
f(x)−D(x), t

)
≥ t

t+ θ(‖x‖r)
(2.10)

for all x ∈ X.
(ii) : Suppose that

NX

(
d[x, x, x], t

)
≥ t

t+ θ(‖x‖r‖y‖r‖z‖r)
(2.11)

for all x ∈ X. Then there exists a unique ternary Jordan fuzzy derivation
D : X → X such that

NX

(
f(x)−D(x), t

)
≥ t

t+ θ(‖x‖r)
(2.12)

for all x ∈ X.
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Abstract. Let A be a unital C∗-algebra and X be a unital Banach A-
bimodule. We characterize n-Jordan multipliers T : A −→ X through
the action on zero product. We also prove that each continuous linear
mapping T from group algebra L1(G) into unital Banach A-bimodule
X which satisfies a related condition is an n-Jordan multiplier.

1. Introduction

Let A be a Banach algebra and X be an A-bimodule. A linear map
T : A −→ X is called left multiplier [right multiplier ] if for all a, b ∈ A,

T (ab) = T (a)b, [T (ab) = aT (b)],

and T is called a multiplier if it is both left and right multiplier. Also, T is
called left Jordan multiplier [right Jordan multiplier ] if for all a ∈ A,

T (a2) = T (a)a, [T (a2) = aT (a)],

and T is called a Jordan multiplier if T is a left and a right Jordan multiplier.
It is clear that every left (right) multiplier is a left (right) Jordan multi-

plier, but the converse is not true in general, see for example [6].
A linear map D from Banach algebra A into an A-bimodule X is called

derivation [Jordan derivation] if

D(ab) = D(a)b+ aD(b), [D(a2) = D(a)a+ aD(a)], a, b ∈ A.

2020 Mathematics Subject Classification. Primary 47B47, 47B49
Key words and phrases. n-Jordan multiplier, C∗-algebra, unital A-bimodule.
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Note that every derivation is a Jordan derivation, but the converse is fails
in general [5]. It is proved by B. E. Johnson in [5, Theorem 6.3] that every
Jordan derivation from C∗-algebra A into any A-bimodule X is a derivation.

Definition 1.1. Let A be a Banach algebra, X be a right A-module and let
T : A −→ X be a linear map. Then T is called left n-Jordan multiplier if for
all a ∈ A, T (an) = T (an−1)a. The right n-Jordan multiplier and n-Jordan
multiplier can be defined analogously.

The two following results concerning characterization of n-Jordan multi-
plier presented by the first author in [6].

Theorem 1.2. [6, Theorem 2.3] Let A be a unital Banach algebra and X be
a unital Banach left A-module. Suppose that T : A −→ X is a continuous
linear map such that

a, b ∈ A, ab = eA =⇒ T (ab) = aT (b). (1.1)

Then T is a right n-Jordan multiplier.

Lemma 1.3. [6, Lemma 2.1] Let A be a Banach algebra, X be a left A-
module and let T : A −→ X be a right Jordan multiplier. Then T is a right
n-Jordan multiplier for each n ≥ 2.

Let A be a Banach algebra and X be a arbitrary Banach space. Then the
continuous bilinear mapping φ : A×A −→ X preserves zero products if

ab = 0 =⇒ φ(a, b) = 0, a, b ∈ A. (1.2)

Motivated by (1.2) the following concept was introduced in [1].

Definition 1.4. A Banach algebra A has the property (B) if for every con-
tinuous bilinear mapping φ : A×A −→ X, where X is an arbitrary Banach
space, the condition (1.2) implies that φ(ab, c) = φ(a, bc), for all a, b, c ∈ A.

It is known that every C∗-algebra A and the group algebra L1(G) for a
locally compact group G has the property (B), [1].

Let J(A) denote the subalgebra of A generated by all idempotents in

A. If A = J(A), then we say that the Banach algebra A is generated by
idempotents. Examples of such Banach algebras are given in [1].

Consider the following condition on a linear map T from Banach algebra
A into a Banach A-bimodule X which is related to the condition (1.1).

a, b ∈ A, ab = 0 =⇒ aT (b) = 0. (1.3)

A rather natural weakening of condition (1.3) is the following:

a, b ∈ A, ab = ba = 0 =⇒ aT (b) + bT (a) = 0. (1.4)

In this note, according to [7], we investigate whether those conditions
characterizes n-Jordan multipliers.
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2. Characterization of n-Jordan multipliers

Since all results which are true for left versions have obvious analogue
statements for right versions, we will focus in the sequel just the right ver-
sions.

Theorem 2.1. Let A be a unital C∗-algebra and X be a unital left A-module.
Suppose that T : A −→ X is a continuous linear map satisfying (1.3). Then
T is a right n-Jordan multiplier.

We mention that Theorem 2.1 is also true for non-unital case, because
every C∗-algebra A has a bounded approximate identity.

In view of Theorem 2.1, the next question can be raised. Dose Theorem
2.1 remain valid with condition (1.3) replaced by (1.4)?

Theorem 2.2. [2, Theorem 2.2] Let A be a C∗-algebra and X be a Banach
space and let φ : A×A −→ X be a continuous bilinear mapping such that

ab = ba = 0 =⇒ φ(a, b) = 0, a, b ∈ A.
Then

φ(ax, by) + φ(ya, xb) = φ(a, xby) + φ(yax, b),

for all a, b, x, y ∈ A.

Our first main result is the following.

Theorem 2.3. Let A be a unital C∗-algebra and X be a symmetric unital left
A-module. Suppose that T : A −→ X is a continuous linear map satisfying
(1.4). Then there exist a Jordan derivation D and a Jordan multiplier ψ
such that T = D + ψ.

Corollary 2.4. Let A be a commutative unital C∗-algebra and X be a sym-
metric unital left A-module. Suppose that T : A −→ X is a continuous
linear mapping such that the condition (1.4) holds. Then T is an n-Jordan
multiplier.

Next we generalize Corollary 2.4 and give the affirmative answer to the
preceding question.

Theorem 2.5. Let A be a von Neumann algebra and X be a unital left
A-module. If T : A −→ X is a continuous linear map satisfying (1.4), then
T is a right n-Jordan multiplier.

It is shown [3] that every C∗-algebra A is Arens regular and the second
dual of each C∗-algebra is a von Neumann algebra. Hence by extending the
continuous linear map T : A −→ X to the second adjoint T ∗∗ : A∗∗ −→ X∗∗

and applying Theorem 2.5, we get the following result.

Corollary 2.6. Suppose that A is a unital C∗-algebra and X is a unital left
A-module. If T : A −→ X is a continuous linear map satisfying (1.4), then
T is a right n-Jordan multiplier.
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Theorem 2.7. [4, Corollary 3.6] Let A be Banach algebra, X be a Banach
space and φ : A×A −→ X be a continuous bilinear mapping such that

a, b ∈ A, ab = ba = 0 =⇒ φ(a, b) = 0,

then
φ(a, x) + φ(x, a) = φ(ax, eA) + φ(eA, xa),

for all a ∈ A and x ∈ J(A). In particular, if A is generated by idempotents,
then

φ(a, b) + φ(b, a) = φ(ab, eA) + φ(eA, ba), a, b ∈ A.

By using Theorem 2.7 we can obtain the following result.

Theorem 2.8. Let A be a unital Banach algebra which is generated by
idempotents and X be a symmetric unital left A-module. If T : A −→ X is
a continuous linear map satisfying (1.4), then there exist a Jordan derivation
D and a Jordan multiplier ψ such that T = D + ψ.

Corollary 2.9. Let A be a commutative unital Banach algebra such that
A = J(A) and X be a symmetric unital left A-module. Let T : A −→ X be
a continuous linear map satisfying (1.4). Then T is an n-Jordan multiplier.

Let A = L1(G) for a locally compact abelian group G. Then A is com-
mutative and it is weakly amenable [3], but neither it is C∗-algebra nor
generated by idempotents. Therefore Corollary 2.4 and Corollary 2.9 can-
not be applied for it.

The following result shows that analogous of Corollary 2.4 is also true for
group algebra.

Theorem 2.10. Let A = L1(G) for a locally compact abelian group G.
Suppose that X is a symmetric unital left A-module and T : A −→ X is a
continuous linear map satisfying (1.4). Then T is an n-Jordan multiplier.
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Abstract. One of the pexiderized types of the orthogonally quadratic
functional equation is of the form

f(x+ y) + g(x− y) = h(x) + k(y) (x ⊥ y).

In this paper, we investigate the general solution of this orthogonally
pexider functional equation on an orthogonality space in the sense of
Rätz, where the function g is odd.

1. Introduction

J. Rätz introduced a defnition of an abstract orthogonality by using four
axioms on a real vector space X with dimX ≥ 2 (See [3]). Suppose X is a
real vector space with dimX ≥ 2 and ⊥ is a binary relation on X with the
following properties:
(O1) totality of ⊥ for zero: x ⊥ 0 and 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X − {0} and x ⊥ y, then x, y are linearly

independent;
(O3) homogeneity: if x, y ∈ X,x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
(O4) the Thalesian property: if P is a 2-dimensional subspace of X, for

any x ∈ P and any λ ∈ R+, there exists y ∈ P such that x ⊥ y and
x+ y ⊥ λx− y.

2020 Mathematics Subject Classification. Primary 39B52; Secondary 39B55
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The pair (X,⊥) is called an orthogonality space. Some interesting examples
of orthogonality spaces are

(a) Any real vector space X can be made into a orthogonality space with
the trivial orthogonality defined on X by (i) for all x ∈ X, x ⊥ 0
and 0 ⊥ x, (ii) for all x, y ∈ X \ {0}, x ⊥ y if and only if x, y are
linearly independent.

(b) Any inner product space (X, ⟨·, ·⟩) is an orthogonality space with the
ordinary orthogonality given by x ⊥ y if and only if ⟨x, y⟩ = 0.

(c) Any normed space (X, ∥ · ∥) can be made into a orthogonality space
with the Birkhoff-James orthogonality defined by x ⊥ y if and only
if ∥x∥ ≤ ∥x+ λy∥ for all λ ∈ R.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all
x, y ∈ X. Clearly examples (a) and (b) are symmetric but example (c) is
not.

Let H be an inner product space with dimH > 2 with the usual or-
thogonality given by x ⊥ y ⇔ ⟨x, y⟩ = 0. Suppose that the functions
f, g, h, k : H → R satisfy the orthgonally pexider functional equation f(x+
y) + g(x− y) = h(x) + k(y) (x ⊥ y) (∗). Fochi [1] showed that the general
solution of (∗) is of the form

f(x) = 1
2

(
Q(x) +A(x) +B(x) + ϕ(∥x∥) + h(0) + k(0)

)
,

g(x) = 1
2

(
Q(x) +A(x)−B(x)− ϕ(∥x∥) + h(0) + k(0)

)
,

h(x) = Q(x) +A(x) + h(0), k(x) = Q(x) +B(x) + k(0),

where Q : H → R is a quadratic function, A,B : H → R are additive
functions and ϕ : [0,∞) → R defined by ϕ(∥x∥) = fe(x)− ge(x) in which fe

and ge are the even part of f and the even part of g, respectively.
In this paper, let (X,⊥) be an orthogonality space in which ⊥ is symmetric

and Y be a real vector space. We investigate the general solution of (∗),
where the function g is odd.

2. The Result
In this section, we investigate the general solution of (∗), where the or-

thogonality is in the sense of Rätz and the function g is odd.

Lemma 2.1. Let (X,⊥) be an orthogonality space and Y be a vector space.
If the odd function A : X → Y satisfies the orthgonally functional equation
A(x+ y) +A(x− y) = 2A(x) (x ⊥ y), then A is additive.

Proof. Let x, y ∈ X with x ⊥ y. Interchanging x with y in A(x+y)+A(x−
y) = 2A(x), we get A(x + y) − A(x − y) = 2A(y). By these equations we
have A(x+ y) = A(x) +A(y). Thus A is orthogonally additive and since A
is odd, so on account of Theorem 5 of [3], it is additive. □

Theorem 2.2. Let (X,⊥) be an orthogonality space, where ⊥ is symmetric
and Y be a vector space. If the functions f, g, h, k : X → Y satisfy the
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orthgonally pexider functional equation
x ⊥ y ⇒ f(x+ y) + g(x− y) = h(x) + k(y), (2.1)

and the function g is odd, then there exist orthogonally quadratic function
Q : X → Y and additive functions A,B : X → Y such that

f(x) = Q(x) + 1
2

(
A(x) +B(x)

)
+ f(0), g(x) = 1

2

(
A(x)−B(x)

)
,

h(x) = Q(x) +A(x) + h(0), k(x) = Q(x) +B(x) + k(0).

Proof. Putting x = y = 0 in (2.1), we get
f(0) = h(0) + k(0). (2.2)

Also putting y = 0 and x = 0 respectively in (2.1), we get
f(x) + g(x) = h(x) + k(0), (2.3)
f(y) + g(−y) = h(0) + k(y), (2.4)

for all x, y ∈ X. Replacing y by −x in (2.4), we have
f(−x) + g(x) = h(0) + k(−x). (2.5)

From (2.3) and (2.5), we have f(x)− f(−x) = h(x)− k(−x) + k(0)− h(0).
Replacing x by −x in the last equation, we get f(−x)−f(x) = h(−x)−k(x)+
k(0)−h(0). Using the last two equations, we obtain h(x)+h(−x)−2h(0) =
k(x) + k(−x)− 2k(0) (x ∈ X) . Define
Q(x) := 1

2

(
h(x)+h(−x)

)
−h(0) = 1

2

(
k(x)+k(−x)

)
−k(0) (x ∈ X), (2.6)

then Q is an even function and Q(0) = 0.
Replacing x by −x in (2.1), we get

f(−x+ y) + g(−x− y) = h(−x) + k(y) (x ⊥ y). (2.7)
From (2.1) and (2.7) (adding and subtracting, respectively), we get
f(x+y)+g(x−y)+f(−x+y)+g(−x−y) = 2Q(x)+2k(y)+2h(0) (x ⊥ y),

(2.8)
f(x+y)+g(x−y)−f(−x+y)−g(−x−y) = h(x)−h(−x) (x ⊥ y). (2.9)

Define the function A : X → Y by A(x) := 1
2

(
h(x)− h(−x)

)
(x ∈ X), then

A is an odd function and so A(0) = 0. Using (2.8) and (2.9), we obtain
f(x+ y) + g(x− y) = Q(x) +A(x) + h(0) + k(y) (x ⊥ y),

and then by (2.1), we have
h(x) = Q(x) +A(x) + h(0) (x ∈ X). (2.10)

Replacing y by −y in (2.1), we get
f(x− y) + g(x+ y) = h(x) + k(−y) (x ⊥ y). (2.11)

From (2.1) and (2.11) (adding and subtracting, respectively), we get
f(x+ y)+ g(x− y)+ f(x− y)+ g(x+ y) = 2h(x)+ 2Q(y)+ 2k(0) (x ⊥ y),

(2.12)
f(x+ y) + g(x− y)− f(x− y)− g(x+ y) = k(y)− k(−y) (x ⊥ y). (2.13)
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Define the function B : X → Y by B(x) := 1
2

(
k(x)− k(−x)

)
(x ∈ X), then

B is an odd function and so B(0) = 0. Using (2.12) and (2.13), we obtain
f(x+ y) + g(x− y) = Q(y) +B(y) + h(x) + k(0) (x ⊥ y),

and then by (2.1), we have
k(y) = Q(y) +B(y) + k(0) (y ∈ X). (2.14)

Using (2.1), (2.10) and (2.14), we get
f(x+y)+g(x−y) = Q(x)+Q(y)+A(x)+B(y)+h(0)+k(0) (x ⊥ y). (2.15)

Putting y = 0 and x = 0 respectively in (2.15) and using (2.2), we get
f(x) + g(x) = Q(x) +A(x) + f(0) (x ∈ X),

f(x)− g(x) = Q(x) +B(x) + f(0) (x ∈ X).

From the last equations, we obtain
f(x) = Q(x) + 1

2

(
A(x) +B(x)

)
+ f(0) (x ∈ X), (2.16)

g(x) = 1
2

(
A(x)−B(x)

)
(x ∈ X). (2.17)

It remains to show that Q is orthogonality quadratic and A,B are additive.
From (2.16), we have f(−x) = Q(x)− 1

2

(
A(x)+B(x)

)
+f(0), and so f(x)+

f(−x) = 2Q(x) + 2f(0) which implies that
Q(x) = 1

2

(
f(x) + f(−x)

)
− f(0) (x ∈ X). (2.18)

Interchanging x by y in (2.15), we have
f(x+ y)− g(x− y) = Q(x) +Q(y) +A(y) +B(x) + f(0) (x ⊥ y).

Using the last equation and (2.15), we obtain
2f(x+ y) = 2Q(x) + 2Q(y) +A(x) +A(y) +B(x) +B(y) + 2f(0) (x ⊥ y),

which implies that
f(x+ y) = Q(x) +Q(y) + 1

2

(
A(x) +A(y) +B(x) +B(y)

)
+ f(0) (x ⊥ y).

(2.19)
Let x, y ∈ X with x ⊥ y, using (2.18) and (2.19), we can conclude that
Q(x+ y) +Q(x− y)

= 1
2

(
f(x+ y) + f(−x− y)

)
− f(0) + 1

2

(
f(x− y) + f(−x+ y)

)
− f(0)

= 1
2

(
f(x+ y) + f(−x− y) + f(x− y) + f(−x+ y)

)
− 2f(0)

= 1
2

(
Q(x) +Q(y) + 1

2

(
A(x) +A(y) +B(x) +B(y)

)
+ f(0)

+Q(x) +Q(y) + 1
2

(
−A(x)−A(y)−B(x)−B(y)

)
+ f(0)

+Q(x) +Q(y) + 1
2

(
A(x)−A(y) +B(x)−B(y)

)
+ f(0)

+Q(x) +Q(y) + 1
2

(
−A(x) +A(y)−B(x) +B(y)

)
+ f(0)

)
− 2f(0)

= 2Q(x) + 2Q(y).
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Thus the function Q is orthogonally quadratic. From (2.16) and (2.17), we
get

A(x) = f(x) + g(x)−Q(x)− f(0) (x ∈ X). (2.20)
Thus for any x, y ∈ X with x ⊥ y, by (2.15) and (2.20), we get
A(x+ y) +A(x− y)

= f(x+ y) + g(x+ y)−Q(x+ y)− f(0)

+ f(x− y) + g(x− y)−Q(x− y)− f(0)

= Q(x) +Q(y) +A(x) +B(y) + f(0) +Q(x) +Q(y) +A(x)−B(y) + f(0)

−Q(x+ y)−Q(x− y)− 2f(0) = 2A(x).

Hence by Lemma 2.1, A is additive. This completes the proof. □

3. Conclusion

Let (X,⊥) be an orthogonality space in which ⊥ is symmetric and Y be
a real vector space. In this paper, we investigate the general solution of the
orthgonally pexider functional equation f(x+y)+g(x−y) = h(x)+k(y) (x ⊥
y), where the function g is odd.
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Abstract. Let H be a real inner product space. In this paper, we show
that if a mapping f : H → H satisfies

f(x+ y) = f(x) + f(y)

for all x, y ∈ H with x ⊥ y and
∥f(x)∥ = ∥x∥

for all x,∈ H, then f is an additive mapping.

1. Introduction

There are several orthogonality notions on a real normed space such as
Birkhoff-James, isosceles, Phythagorean, Roberts and Diminnie ([3]). J.
Rätz [1] introduced an abstract definition of orthogonality on a real vector
space by using four axioms. Let us recall the orthogonality in the sense of
Rätz.

Definition 1.1. Suppose X is a real vector space with dimX ≥ 2 and ⊥ is
a binary relation on X with the following properties:
(O1) totality of ⊥ for zero: x ⊥ 0 and 0 ⊥ x for all x ∈ X;
(O2) independence: if x, y ∈ X \ {0} and x ⊥ y, then x, y are linearly

independent;
(O3) homogeneity: if x, y ∈ X,x ⊥ y, then αx ⊥ βy for all α, β ∈ R;
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(O4) the Thalesian property: if P is a 2-dimensional subspace of X, for
any x ∈ P and any λ ∈ R+, there exists y ∈ P such that x ⊥ y and
x+ y ⊥ λx− y.

The pair (X,⊥) is called an orthogonality space. By an orthogonality
normed space we mean an orthogonality space equipped with a norm.

Some interesting examples of orthogonality spaces are
(a) Any real vector space X can be made into a orthogonality space with

the trivial orthogonality defined on X by
(i) for all x ∈ X, x ⊥ 0 and 0 ⊥ x,
(ii) for all x, y ∈ X \ {0}, x ⊥ y if and only if x, y are linearly

independent.
(b) Any inner product space (X, ⟨·, ·⟩) is an orthogonality space with the

ordinary orthogonality given by x ⊥ y if and only if ⟨x, y⟩ = 0.
(c) Any normed space (X, ∥ · ∥) can be made into a orthogonality space

with the Birkhoff-James orthogonality defined by x ⊥ y if and only
if ∥x∥ ≤ ∥x+ λy∥ for all λ ∈ R.

The relation ⊥ is called symmetric if x ⊥ y implies that y ⊥ x for all
x, y ∈ X. Clearly examples (a) and (b) are symmetric but example (c)
is not. It is remarkable to note that a real normed space of dimension
greater than 2 is an inner product space if and only if the Birkhoff-James
orthogonality is symmetric.

Let X be a orthogonality vector space in the sense of Rätz and Y be an
abelian group. A function f : X → Y is called orthogonally additive, if
f(x+ y) = f(x) + f(y) for all x, y ∈ X with x ⊥ y.

An orthogonally additive mapping can not be additive or linear in general.
For example the orthogonally additive mapping f : H → R defined on inner
product space H by f(x) = ∥x∥2 is a quadratic function, since it satisfies
the quadratic functional equation

q(x+ y) + q(x− y) = 2q(x) + 2q(y)

for all x, y ∈ X.
Rätz in Corollary 7 of [1] investigated the structure of orthogonally ad-

ditive mappings and showed that any orthogonally additive mapping f is
of the form a+ q, for a unique additive mapping a and a unique quadratic
mapping q.

Moreover he showed that if H is a real inner product space, then any
orthogonally additive mapping f : H → Y is of the form

f(x) = a(∥x∥2) + b(x) (1.1)

for all x ∈ H, where a : R → Y and b : H → Y are additive mapping
uniquely determined by f . In this paper, we show that any orthogonally
additive isometry on an inner product space is an additive mapping.
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2. The result
Theorem 2.1. Let H be a real inner product space. If f : H → H is an
orthogonally additive mapping such that

∥f(x)∥ = ∥x∥
for all x ∈ H, then f is an additive mapping.

Proof. Let ⟨., .⟩ denote the inner product of H. It follows from (1.1) that
∥x∥2 = ∥f(x)∥2

= ⟨f(x), f(x)⟩
= ⟨a(∥x∥2) + b(x), a(∥x∥2) + b(x)⟩
=

∥∥a(∥x∥2)∥∥2 + 2⟨a(∥x∥2), b(x)⟩+ ∥b(x)∥2

for all x ∈ H.
Let r ∈ Q. Then replacing x by rx we get

r2∥x∥2 = r4
∥∥a(∥x∥2)∥∥2 + 2r3⟨a(∥x∥2), b(x)⟩+ r2∥b(x)∥2 (2.1)

for all x ∈ H. Dividing the equation (2.1) by r4 we have
1
r2
∥x∥2 =

∥∥a(∥x∥2)∥∥2 + 21
r ⟨a(∥x∥

2), b(x)⟩+ 1
r2
∥b(x)∥2

for all x ∈ H. Now taking limit as r → ∞, we get
a(∥x∥2) = 0, ∥b(x)∥ = ∥x∥

for all x ∈ H.
For each t > 0, put x =

√
t∥y∥−1y where 0 ̸= y ∈ H. Then x ∈ H and

a(t) = a(t∥y∥−2∥y∥2) = a(
∥∥√t∥y∥−1y

∥∥2) = a(∥x∥2) = 0.

Thus a(t) = 0 for all t > 0. Also since a is an additive mapping, so a is
odd. Therefore a(t) = −a(−t) = 0 for all t < 0. This implies that a = 0 on
R. Thus f(x) = b(x) for all x ∈ H and f is an additive mapping. □
Proposition 2.2. Suppose that the functions f , a and b satisfy the equation
(1.1) for all x ∈ H. If a : R → H and b : H → H are linear and f : H → H
is bijective, then f is linear.

Proof. Suppose that a ̸= 0 on R. Thus for 0 ̸= a(1) ∈ H, there exists a
0 ̸= x0 ∈ H such that f(x0) = −a(1). Then we have

−a(1) = f(x0) = f(x) = a(∥x0∥2) + b(x0) = ∥x0∥2a(1) + b(x0).

It follows that (1 + ∥x0∥2)a(1) = −b(x0) and Then

a(1) = b
( −x0
1 + ∥x0∥2

)
.

Therefore

f(x) = a(∥x∥2) + b(x) = ∥x∥2a(1) + b(x) = ∥x∥2b
( −x0
1 + ∥x0∥2

)
+ b(x)
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for all x ∈ H. So for x = 1+∥x0∥2
∥x0∥2 x0 ̸= 0 we have

f
(
1+∥x0∥2
∥x0∥2 x0

)
=

∥∥∥1+∥x0∥2
∥x0∥2 x0

∥∥∥2b( −x0
1 + ∥x0∥2

)
+ b

(
1+∥x0∥2
∥x0∥2 x0

)
= b

(∥∥∥1+∥x0∥2
∥x0∥2 x0

∥∥∥2 −x0
1 + ∥x0∥2

+ 1+∥x0∥2
∥x0∥2 x0

)
= b

(
− 1+∥x0∥2

∥x0∥2 x0 +
1+∥x0∥2
∥x0∥2 x0

)
= b(0) = 0.

This contradicts the injectivity of f . Thus a = 0 on R and then f = b is
linear. □
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Abstract. The purpose of this paper is to present some fixed point
results for ϕ-contractions in modular metric spaces.

1. Introduction

The concept of modular spaces was introduced by Nakano [10] and was
later reconsidered in detail by Musielak and Orlicz [8, 9]. In 2010, Chistyakov
[2] introduced a new metric structure, which has a physical interpretation
and generalized modular spaces and complete metric spaces by introducing
modular metric spaces. For more features of concepts of modular metric
spaces, see e. g., [1, 3, 4]. Fixed point theory involves many fields of
mathematics and branches of applied science such as functional analysis,
mathematical analysis, general topology and operator theory. In 2003, Kirk
et al. [7] introduced cyclic contraction in metric spaces and investigated the
existence of proximity points and fixed points for cyclic contraction map-
ping. Later, Karapinar and Erhan[6] proved the existence of fixed points for
various types of cyclic contractions in a metric space. Recently, E. Kara-
pinar in [5] proves a fixed point theorem for an operator T on a complete
metric space X when X has a cyclic representation with respect to T . In
this paper, we improve and generalized the fixed point results for mappings
satisfying cyclical contractive conditions established by E. Karapinar [5], in
modular metric spaces.

2020 Mathematics Subject Classification. Primary: 47H10, 54H25; Secondary: 46A80
Key words and phrases. modular metric space, fixed point, cyclic ϕ-contraction.

306



H. RAHIMPOOR

Definition 1.1. Let X be an arbitrary set, the function ω : (0,∞) ×X ×
X −→ [0,∞] that will be written as ωλ(x, y) = ω(λ, x, y) for all x, y ∈ X
and for all λ > 0, is said to be a modular metric on X (or simply a modular
if no ambiguity arises) if it satisfies the following three conditions:
(i) given x, y ∈ X, ωλ(x, y) = 0 for all λ > 0 if and nonly if x = y;
(ii) ωλ(x, y) = ωλ(y, x), for all λ > 0 and x, y ∈ X;
(iii) ωλ+µ(x, y) ≤ ωλ(x, z) + ωµ(z, y) for all λ, µ > 0 and x, y, z ∈ X.
If instead of (i), we have only the condition:
(i1) ωλ(x, x) = 0 for all λ > 0 and x ∈ X, then ω is said to be a (metric)
pseudomodular on X and if ω satisfies (i1) and
(i2) given x, y ∈ X, if there exists λ > 0, possibly depending on x and y,
such that ωλ(x, y) = 0 implies that x = y, then ω is called a strict modular
on X.

If instead of (iii) we replace the following condition for all λ, µ > 0 and
x, y, z ∈ X;

ωλ+µ(x, y) ≤
λ

λ+ µ
ωλ(x, z) +

µ

λ+ µ
ωλ(z, y), (1.1)

then ω is called a convex modular on X.
Definition 1.2. [2] Given a modular ω on X, the sets

Xω ≡ Xω(x◦) = {x ∈ X : ωλ(x, x◦) → 0 as λ → ∞}
and

X∗
ω ≡ X∗

ω(x◦) = {x ∈ X : ωλ(x, x◦) < ∞ for some λ > 0}
are said to be modular spaces (around x◦). Also the modular spaces Xω and
X∗

ω can be equipped with metrics dω and d∗ω, generated by ω and given by
dω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ λ}, x, y ∈ Xω

and
d∗ω(x, y) = inf{λ > 0 : ωλ(x, y) ≤ 1}, x, y ∈ X∗

ω

If ω is a convex modular on X, then according to [2, Theorem 3.6] the
two modular spaces coincide, Xω = X∗

ω.
Definition 1.3. Given a modular metric space Xω, a sequence of elements
{xn}∞n=1 from Xω is said to be modular convergent (ω−convergent) to an
element x ∈ X if there exists a number λ > 0, possibly depending on {xn}
and x , such that limn→∞ ωλ(xn, x) = 0. This will be written briefly as
xn

ω→ x, as n → ∞.
Definition 1.4. [4] A sequence {xn} ⊂ Xω is said to be ω-Cauchy if there
exists a number λ = λ({xn}) > 0 such that limm,n→∞ ωλ(xn, xm) = 0, i.e.,
∀ε > 0 ∃ n◦(ε) ∈ N such that ∀n,m ≥ n◦(ε) : ωλ(xn, xm) ≤ ε.

Modular metric space Xω is said to be ω-complete if each ω-Cauchy sequence
from Xω be modular convergent to an x ∈ Xω.
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Remark 1.5. A modular ω = ωλ on a set X, for given x, y ∈ X, is non-
increasing on λ. Indeed if 0 < λ < µ, then we have

ωµ(x, y) ≤ ωµ−λ(x, x) + ωλ(x, y) = ωλ(x, y)

for all x, y ∈ X.

2. Main result

Definition 2.1. Let Xω be a modular metric space, p ∈ N, and T : Xω →
Xω a map. Then we say that ∪p

i=1Ai (where Ai ⊆ Xω for all i ∈ {1, 2, ..., p})
is a cyclic representation of X with respect to T if and only if the following
two conditions hold:
(I) Xω = ∪p

i=1Ai;
(II) T (Ai) ⊆ Ai+1 for 1 ≤ i ≤ p− 1, and T (Ap) ⊆ A1.
Definition 2.2. Let Xω be a modular metric space, m a positive integer,
A1, A2, ..., Am ω-closed nonempty subset of Xωand Y = ∪m

i=1Ai and T :
Y → Y an operator. T is called a cyclic weak ϕ-contraction if
(I) ∪m

i=1Aiis a cyclic representation of Y with respect to T ;
(II) there exists a non-decreasing function ϕ : [0,∞) → [0,∞) with ϕ(t) > 0
for t ∈ (0,∞) and ϕ(0) = 0, such that

ωλ(Tx, Ty) ≤ ωλ(x, y)− ϕ(ωλ(x, y)) (2.1)
for all λ > 0 and for any x ∈ Ai, y ∈ Ai+1, i = 1, 2, ...,m where Am+1 = A1.
Example 2.3. Let Xω = [0, 1], we take a mapping ω : (0,∞) × [0, 1] ×

[0, 1] → [0,∞] which is defined by ωλ(x, y) =
|x− y|

λ
for all x, y ∈ X = Xω

and λ > 0. Consider the ω-closed nonempty subsets of Xω as follow :
A1 = [0, 1], A2 = [0,

2

3
], A3 = [0,

1

2
], A4 = [0,

5

12
], A5 = [0,

3

8
] with Xω = Y =

∪5
i=1Ai. Let T : Xω → Xω be the mapping defined by Tx =

3x+ 1

6
. Then,

T (A1) ⊆ A2, T (A2) ⊆ A3, T (A3) ⊆ A4, T (A4) ⊆ A5, T (A5) ⊆ A1. And

ωλ(Tx, Ty) =
|3x+ 1

6
− 3y + 1

6
|

λ
=

1

λ
(
|x− y|

2
) ≤ ωλ(x, y)−

1

2
ωλ(x, y).

Furthermore, if ϕ : [0,∞) → [0,∞) is defined by φ(t) = t
2 , then ϕ is strictly

increasing and T is a cyclic weak ϕ-contraction.
Remark 2.4. Rewriting the inequality 1.1 in the form

(λ+ µ)ωλ+µ(x, y) ≤ λωλ(x, z) + µωµ(y, z)

we find that the function ω is a convex modular on X if and only if the
function ω̂(x, y) = λωλ(x, y) for all λ > 0 and x, y ∈ X, is simply a modular
on X, and the function λ 7→ ω̂(x, y) = λωλ(x, y) are non-increasing on
(0,∞):

if 0 < λ ≤ µ, then ωµ(x, y) ≤
λ

µ
ωλ(x, y) ≤ ωµ(x, y).
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Now, for any µ ≥ λ we find k ∈ R+ such that µ = kλ and so

ωkλ(x, y) ≤
1

k
ωλ(x, y). (2.2)

Theorem 2.5. Let ω be a convex modular on X such that Xω is a ω−complete
modular metric space, m is a positive integer, A1, A2, ..., Am ω-closed sub-
sets of Xω and Y = ∪m

i=1Ai. Suppose that φ : [0,∞) → [0,∞) with φ(t) is a
non-decreasing function and φ(t) = 0 only for t = 0 and T : Xω×Xω → Xω

is a cyclic weak φ-contraction where Y = ∪m
i=1Ai is a cyclic representation

of Y with respect to T . Then, T has a unique fixed point z ∈ ∩m
i=1Ai.

Theorem 2.6. Let T : Y → Y be a self mapping as in Theorem 2.5 .
(i) If there exists a sequence {yn} in Y with limn→∞ ωλ(yn, T yn) = 0 then
limn→∞ ωλ(yn, z) = 0.
(ii) If there exists a ω-convergent sequence {yn} in Y with
limn→∞ ωλ(yn+1, T yn) = 0 then there exists x ∈ Y such that
limn→∞ ωλ(yn, T

nx) = 0.
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سخنرانی

−لاپلاسین P−Q اصلی ویژه مقدار برای بالا کران یک

1 لطیفی مهدی

الانبیاء(ص) خاتم هوایی پدافند دانشگاه پایه، علوم دانشکده ریاضی، گروه 1

m_ latifi@khadu.ac.ir

−p−لاپلاسین q خطی غیر ویژه مقدار مسئله اصلی ویژه مقدار برای پژوهش این در چکیده.
دهیم. می ارائه بالا کران یک ،RN در کراندار ناحیه یک روی بر دیریکله مرزی شرایط با

باشد. می جدید شده گرفته بکار روش اما باشد نمی بهترین بالا کران این هرچند

پیش گفتار .۱

موضوعات از یکی لاپلاسین، خانواده عملگرهای بخصوص و عملگرها ویژه مقادیر خواص
برای مناسب ابزاری تغییراتی های روش باشد[۲]. می اخیر های دهه در محققین توجه مورد
مقدار مسئله پژوهش این در .[۱ باشد[۳، می ویژه مقادیر رفتار و وجود زمینه در نتایجی حصول

دهیم: می قرار نظر مد را زیر ویژه

D(Ω) :

{
−∆pu−∆qu = λ|u|p−2u, Ω؛ در
u = 0, Ω∂؛ روی

(۱ .۱)

p > 1 با −لاپلاسین p عملگر ∆pu := div(|∇u|p−2∇u) ،RN در کراندار ناحیه یک Ω که
Ⅼjusternik− اصل از استفاده با مسئله این برای ویژه مقدار وجود است. 1

p
+ 1

q
= 1 و

شود. می نتیجه آن شرایط بررسی و Sⅽhnireⅼⅿan

2020 Mathematics Subject Classification. Primary 40J40; Secondary 47H05,
47J25, 47J20.

. Ⅼjusternik−Sⅽhnireⅼⅿan اصل ، پوانکاره نامساوی اصلی، ویژه مقدار کلیدی. واژگان
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باشند. X روی تابع دو F,G و نامتناهی، بعد با انعکاسی و حقیقی باناخ فضای یک X اگر
ویژه مقدار مسئله ،α > 0 ثابت برای

F ′(u) = λG′(u) u ∈ Nα, λ ∈ R (۲ .۱)
و است G تراز مجموعه Nα := {u ∈ X;G(u) = α} که

باشند. C1(X,R) در زوج هایی تابعک ،F,G : X → R های تابعک الف)

. F ′(u) ≠ 0 شود نتیجه ،u ∈ coNα برای F (u) ̸= 0 از و باشد قوی پیوسته F ′ ب)

کند. صدق (S)1 شرط در و باشد یکنواخت پیوسته کراندار، های مجموعه روی G′ عملگر ج)

باشیم: داشته u ̸= 0 برای و باشد کراندار Nα تراز مجموعه د)

⟨G′(u), u⟩ > 0, lim
t→+∞

G(tu) = +∞, inf
u∈Nα

⟨G′(u), u⟩ > 0

که Nα از K فشرده و متقارن های زیرمجموعه همه خانواده را An ،n ∈ N هر برای
کنیم: می تعریف و گیریم، می F (u) > 0 و باشد gen(K) ≥ n

±cn =

{
supK∈An

infu∈K ±F (u) An ̸= ∅ اگر
0 An = ∅ اگر

و n = 1, 2, ... برای

χ± :=

{
sup{n ∈ N : ±cn > 0} c1 > 0 اگر
0 c1 = 0 اگر

زیر احکام (الف−د) شرایط برقراری فرض با [۴](Ⅼjusternik−Sⅽhnireⅼⅿan) .۱ .۱ قضیه
است: برقرار

(un,−un)زوج دارای (۲ .۱) صورت آن در (− یا +) ،±cn > 0 اگر ویژه: مقادیر وجود (۱
است. F (un) = cn و λn ̸= 0 ویژه مقدار با

ویژه مقادیر با ویژه توابع از (u,−u) زوج χ+ + χ− دارای حداقل ، (۲ .۱) چندگانگی: (۲
است. صفر مخالف

. n → ∞ که ای بگونه cn → 0 و ±∞ > ±c1 ≥ ±c2 ≥ ... ≥ 0 بحرانی: سطوح (۳

u ∈ coNα برای ، F (u) = 0 و χ− = ∞ یا χ+ = ∞ اگر ویژه: مقدار نامتناهی (۴
برای متمایز ویژه مقادیر از (λn) نامتناهی دنباله صورت آن در ،⟨F ′(u), u⟩ = 0 که دهد نتیجه

. λn → 0 که دارد وجود (۲ .۱)
آن در u = 0 شود، نتیجه F (u) = 0, u ∈ coNα از اگر ویژه: توابع ضعیف همگرایی (۵
وجود ( ۲ .۱ ) ویژه های جواب از (un, λn) دنباله یک و max(χ+, χ−) = +∞ صورت

. n هر برای λn ̸= 0 و un ⇀ 0, λn → 0 که دارد
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λ1 برای بالا کران .۲

عرض دارای Ω ⊂ RN باز مجموعه کنید فرض (Ẇ1,p(Ω) در پوانکاره (نامساوی .۱ .۲ گزاره
آن در . 1 ≤ p < ∞ و گیرد، قرار d فاصله با موازی صفحه ابر دو بین یعنی باشد، d متناهی

داریم: هر برای صورت

∫
Ω

|u(x)|pdx ≤ dp

p

∫
Ω

|∇u(x)|pdx.

xN = d و xN = 0 های صفحه ابر بین Ω کنیم می فرض کلیت از شدن کاسته بدون برهان.
داریم: u ∈ C∞

c (Ω) برای لذا دارد. قرار

|u(x′, xN)| = |u(x′, xN)− u(x′, 0)| =
∣∣∣∣∫ xN

0

∂u

∂xN

(x′, t)dt

∣∣∣∣
≤ x

1
q

N

(∫ d

0

∣∣∣∣ ∂u

∂xN

(x′, t)

∣∣∣∣p dt)
1
p

.

آوریم: می بدست تونیلی قضیه از استفاده با

∫
RN−1×[0,d]

|u(x′, xN)|p dx ≤
∫
RN−1

∫ d

0

x
p
q

N

∫ d

0

∣∣∣∣ ∂u

∂xN

(x′, t)

∣∣∣∣p dtdxNdx
′

=

∫
Ω

∣∣∣∣ ∂u

∂xN

(y)

∣∣∣∣p dy ∫ d

0

xp−1
N dxN =

|d|p

p

∫
Ω

∣∣∣∣ ∂u

∂xN

(y)

∣∣∣∣p dy
≤ |d|p

p

∫
Ω

|∇u(x)|p dx.

□

اولین برای بالایی کران توانیم می فوق نامساوی گیری بکار و cn تعریف به توجه با اکنون
آوریم. بدست مسئله ویژه مقدار

داریم: ( ۱ .۱ ) مسئله اصلی ویژه مقدار برای p ≥ q فرض با .۲ .۲ گزاره

λ1 ≤
dp

q
.
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لطیفی م.

c1 = supK∈A1
infu∈K F (u) باشد، Nα از فشرده و متقارن ای زیرمجموعه K اگر برهان.

:u ∈ Ẇ1,p(Ω) هر برای پوانکاره نامساوی با اما ،

F (u) =

∫
Ω

|u(x)|p

p
dx ≤ 1

p

(
dp

p

∫
Ω

|∇u|p
)

≤1

p

(
dp

p

∫
Ω

|∇u|p + dp

q

∫
Ω

|∇u|q
)

=
dpα

p
,

اگر همچنین . c1 ≤ dpα
p

بنابراین

F (u) =

∫
Ω

|u|p

p
, G1(u) =

∫
Ω

|∇u|p

p
, G2(u) =

∫
Ω

|∇u|q

q
,

p − 1, p − 1, q − 1 درجه از بترتیب همگن و مثبت توابعی F ′, G′
1, G

′
2 که شود می دیده

بنابراین هستند.

F (u) =

∫ 1

0

⟨F ′(tu), u⟩ dt = ⟨F ′(u), u⟩
p

۱ .۱ ) از ویژه مقدار یک ، (u1, λ1) اگر اکنون .G1(u), G2(u) توابع برای مشابه طور به و
داریم: ، باشد G(u1) = α با (

F ′(u1) = λ1 [G
′
1(u1) +G′

2(u1)] ⇒
⟨F ′(u1), u1⟩ = λ1 [⟨G′

1(u1), u1⟩+ ⟨G′
2(u1), u1⟩] ⇒

λ1 =
⟨F ′(u1), u1⟩

⟨G′
1(u1), u1⟩+ ⟨G′

2(u1), u1⟩
=

pF (u1)

pG1(u1) + qG2(u1)

≤ p

q

c1
α
,

□ . λ1 ≤ dp

q
آوریم می بدست c1 ≤ dp

p
اینکه به توجه با

است. مناسب نتیجه یک که ، λ1 ≤ d2

2
آوریم می بدست q = p = 2 خاص حالت برای

مراجع

1. D. Valtorta, sharp estimate on the first eigenvalue of the p-laplacian on compact
manifold with nonnegative ricci curvature, Nonlinear Analysis: Theory, Methods
and Applications 13 (2012), 4974-4994.

2. L. Esposito-C. Nitsch- C. Trombetti, Best constants in Poincaré inequalities for
convex domains, J.Convex Anal. 20 (2013).

3. S. Azami- L. Liu, Eigenvalues variation of the p-Laplacian under the Yamabe
flow, J. of Diff. Equ. and App. 3 (2016).

4. E. Zeidler, Nonlinear Functional Analysis and its Applications vol. 2B, Nonlinear
monoton operators, Springer Publishers, Berlin, 1990.

314
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تغییرات حساب در غیرخطی الاستیسیته مسائل عددی حل

2 دهکردی شاهرخی محمدصادق و ∗ 1 تقوی مژگان

بهشتی شهید دانشگاه ریاضی، علوم دانشکده صنعتی، و کاربردی ریاضی گروه 1

mo_taghavi@sbu.ac.ir
بهشتی شهید دانشگاه ریاضی، علوم دانشکده صنعتی، و کاربردی ریاضی گروه 2

M_Shahrokhi@sbu.ac.ir

تغییراتی مسائل مینمیم کننده های از تقریبی عددی، روش  از استفاده با مقاله این در چکیده.
به مربوط اویلر−لاگرانژ معادلات منظور این برای می آوریم. بدست غیرخطی الاستسیته در
حل را آمده بدست جبری دستگاه و کرده سازی گسسته طیفی روش وسیله به را انرژی تابعک

دهیم. می نشان را موردنظر روش کارایی عددی نتایج از استفاده با آخر در کنیم. می

پیش گفتار .۱

بگیرید نظر در را زیر تغییراتی مساله باشد. کراندار دامنه یک Ω کنید فرض

F[u,Ω] :=
∫
Ω

W (∇u(x))dx. (۱ .۱)

کننده مینیمم یافتن دنبال به ما می باشند. غیرخطی الاستیسیته مسائل به مربوط بالا انرژی تابعک
فرم به که توابع از ای مجموعه روی تابعک این

Ap(Ω) :=
{
u ∈ W 1,p(Ω,Rn) : u|∂Ω = φ(x), det∇u > 0 −a.e

}
,

تابع W (∇u(x)) : Mn×n
+ → R+ ، (۱ .۱) انرژی تابعک در هستیم. شوند، می تعریف

دترمینان با n×n های ماتریس از ای Mn×nمجموعه آن در که است، شده ذخیره انرژی چگالی

2020 Mathematics Subject Classification. Primary 49M25; Secondary 49M37.
. طیفی روش گسسته سازی، اویلر−لاگرانژ، معادلات تغییراتی، مسائل کلیدی. واژگان
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دهکردی شاهرخی ح. م. و تقوی م.

یک h ∈ C2(0,∞) چنین هم کنند. می صدق u = φ(x) مرزی شرط در و هستند مثبت
است: برقرار آن برای زیر شرایط در که است محدب تابع

h : (0,∞) → (0,∞) [ ۱H]
limt↓0 h(t) = limt↑∞

h(t)
t

= ∞ [ ۲H]

درنظر {x ∈ R2|a < |x| < b} صورت به کراندار و باز مجموعه ی یک را Ω ⊂ R2 اینجا در
عناصرمتناهی روش از [۳ ،۲ ،۵ ،۱] مقاله های در است. 0 < a < b < ∞ که گیریم می
حفره چند یا یک دارای که (۱ .۱) تغییراتی مسائل عددی حل برای متفاوت بندی های شبکه با
شده بررسی روش ها این بودن موثر و کارآمدی همگرایی، هم چنین شده است. استفاده هستند
برای عددی های روش از استفاده به را ما مقالات این در عددی نتایج بررسی و تحلیل است.
تابع مقاله این در کرد. ترغیب دیگر تغییراتی مسائل های کننده مینیمم از تقریبی آوردن بدست
مورد آن برای عددی روش تاکنون که آید می بدست [۴] اسکرم مدل از مورد نظر انرژی چگالی

شود. می بیان زیر صورت به و است نگرفته قرار استفاده

W (∇u(x)) := | ∧2 ∇u|p + h(det∇u). (۲ .۱)

این کار برای که زنیم می تقریب طیفی روش از استفاده با را مساله این مینیمم کننده های ادامه در
(۱ .۱) تغییراتی مساله ، (۲ .۱) چگالی تابع برای ∇u ماتریس منفرد مقادیر از استفاده با ابتدا

می کنیم. بازنویسی دیگری فرم به را

پژوهش دست آورد های .۲

قطبی فرم به که اویلر−لاگرانژ معادلات دستگاه روی بر را موردنظر عددی روش بخش این در
صورت به که تغییراتی مساله قطبی فرم حال می کنیم. پیاده سازی شده اند، بیان

E[u,Ω] =
∫
Ω̃

(
F (g(P,Q)) + h(d((P,Q))

)
µ(ρ)dρdφ

=: F[P,Q] (۱ .۲)

Ω استاندارد فرم Ω̃ و µ(ρ) :=
(b2 − a2) + (b− a)2ρ

4
آن در که بگیرید درنظر را می باشد

هموار توابع می آوریم. بدست (P,Q) متغیرهای به نسبت را اویلر−لاگرانژ معادلات می باشد.
انرژی تابعک اویلر−لاگرانژ معادلات حال بگیرید. نظر در را هستند صفر مرز روی که (P̄ , Q̄)

می شوند: محاسبه زیر فرم به F∫
Ω̃

f1(P,Q, P̄ )dρdφ = 0,

∫
Ω̃

f2(P,Q, Q̄)dρdφ = 0. (۲ .۲)
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تغییرات حساب در غیرخطی الاستیسیته مسائل عددی حل

صورت به f2 و f1 آن در که کنید توجه

f1 = P̄
{ 4

µ(ρ)
F ′(g)P

[
Q2

ρ

(
P 2
φ + P 2(Qφ + 1)2

)
+

(Qφ + 1)2(P 2
ρ + P 2ψ2

ρ)−Qρ(Qφ + 1)
]
+ h′(d)Pρ×

(Qφ + 1)
}
+ (P̄ )ρ

{ 4

µ(ρ)
F ′(g)P 2

[
Pρ(Qφ + 1)−

PφQφ)(Qφ + 1)
]
+ h′(d)P (Qφ + 1)

}
− (P̄ )φ

{ 4

µ(ρ)
×

F ′(g)
[
Pφ(P

2
ρ + P 2ψ2

ρ)− Pρ

]
+ h′(d)Qρ

}
,

و

f2 = (Q̄)ρ

{ 2

µ(ρ)
F ′(g)

[
2P 2ψρ

(
P 2
φ + P 2(Qφ + 1)2

)
−

P 2(Qφ + 1)
]
− h′(d)PφP

}
+ (Q̄)a

{ 2

µ(ρ)
F ′(g)×[

2Γ2(Qφ + 1)(P 2
ρ + P 2ψ2

ρ)− P 2ψρ

]
+ h′(d)PPρ

}
,

سازی پیاده (۲ .۲) اویلر−لاگرانژ معادلات روی بر را طیفی روش قسمت این در آیند. می بدست
صورت به P (ρ, φ) تابع منظور این برای کنیم. می

PN,M := PN,M(ρ, φ)

=
M∑
j=0

[ N
2∑

i=0

αi,j cos(iφ) +

N
2
−1∑

i=1

βi,j sin(iφ)

]
lj(ρ), (۳ .۲)

فرم به را Q(ρ, φ) تابع مشابه طور به و

QN,M := QN,M(ρ, φ)

=
M∑
j=0

[ N
2∑

i=0

ξi,j cos(iφ) +

N
2
−1∑

i=1

ηi,j sin(iφ)

]
lj(ρ), (۴ .۲)

روش از استفاده با بعدی گام در باشد. می لاگرانژ چندجمله ای lj(ρ) آن در که کنیم، می بیان
بدست جبری معادلات دستگاه یک آن بر مرزی شرایط اعمال و مناسب عددی انتگرال گیری های
بیان با ادامه در آید. می بدست (PN,M , QN,M) مجهولات از تقریبی آن حل با که می آوریم

کنیم. می بررسی را شده ارائه روش کارایی مثال یک

(M,N) → +∞ اگر بگیرید. درنظر را F[PN,M , QN,M ] تغییراتی مساله .۱ .۲ قضیه
است. همگرا F[P,Q] به F[PN,M , QN,M ] انرژی تابعک آن گاه
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دهکردی شاهرخی ح. م. و تقوی م.

هم چنین باشد. b = 1 ،Ω دامنه در و p = 3
2

کنید فرض (۲ .۱) چگالی تابع در .۲ .۲ مثال
انرژی تابعک خطای زیر جدول می گیریم. درنظر را h(t) = 2−

1
4

( (t−1)2

2
+ 1

t

)
محدب تابع

دهد. می نشان a = 103 برای شده ارائه روش از استفاده با را (۱ .۲)

a = 10−3 با F[·; Ω̃] انرژی تابعک خطای :۱ جدول

M 24 32 40 48
a = 10−3 1.7862e− 04 3.965e− 04 8.8149e− 04 9.4425e− 05

مراجع

1. Y. Lian, Z. Li, A dual-parametric finite element method for cavitation in non-
linear elasticity , J. Comput. Appl. Math., Vol. 236,2011, pp. 834–842.

2. Y. Lian, Z. Li, A numerical study on cavitation in nonlinear elasticity-defects
and configurational forces Mathematical Models and Methods in Applied Sciences,
Vol. 21, 2011, pp. 2551-2574.

3. W. Huang, Z. Li, A mixed finite element method for multi-cavity computation in
incompressible nonlinear elasticity , J. Comput Math, Vol. 37, 2019, pp. 611–630.

4. R. Slobodeanu, On the geometrized Skyrme and Faddeev models, J. Geometry
and Physics,Vol. 60,2010, pp. 643–660.

5. C. Su, Z. Li, Error analysis of a dual-parametric bi-quadratic FEM in cavitation
computation in elasticity ,SIAM J. Numer. Anal., Vol. 53,2015, pp. 1629–1649.

318



*:سخنران سخنرانی

کسری تغییرات حساب در موضعی مینیمم کننده های
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های سال در که می باشد، ریاضیات مهم شاخه های از یکی کسری تغییرات حساب چکیده.
اکسترمم های داریم، قصد مقاله این در ما است.  گرفته قرار ریاضیدانان توجه مورد بسیار اخیر
در باشد، کاپوتو نوع از کسری مشتقات شامل تابعی که حالتی برای را انرژی تابعی موضعی

دهیم. قرار بررسی مورد اولر−لاگرانژ معادله و مستقیم روش کمک به دو بعد

پیش گفتار .۱

انرژی تابعی باشد، شیتز لیپ مرز با دامنه ای Ω = {x ∈ R2 : a < |x| < b} کنید فرض

E[u,Ω)] =
∫
Ω

1

2
|∇u|2 + ϕ(det∇u)dx,

قبول قابل توابع فضای روی را

A(Ω) =

{
u ∈ W 1,2(Ω,R2) : u|∂Ω = x, det∇u > 0 a.e. in Ω

}
,

تابع یک دارد، حضور تابعی ضابطه ی در که ϕ : (0,∞) → (0,∞) همچنین بگیرید. نظر در
دارد. قرار C2(0,∞) فضای در و است محدب
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دهکردی شاهرخی م.ص. و طوس نژاد ف.

قطبی مختصات کلی فرم به را u تابع

(r, θ) 7−→ (ρ(r, θ), φ(r, θ))

از کاپوتو جزیی کسری مشتقات به را صحیح مرتبه ی جزیی مشتقات سپس می دهیم، انتقال
پیشنهاد [۲] مرجع کسری حساب زمینه در مطالعه منظور می کنیم(به تبدیل 0 < α < 1 مرتبه ی

می گیرد قرار A(Ω) توابع فضای در آن گاه کند، صدق زیر شرایط در u تابع اگر .( می شود

ρ(r, θ) = ρ(r), ρ(a) = a, ρ(b) = b, C
a Dα

r ρ > 0

φ(r, θ) = θ + g(r)

می شود تبدیل زیر فرم به انرژی تابعی شرایط، این اعمال با . g ∈ W 1,2(a, b) که طوری به
(۱ .۱)

E(ρ, g) =
∫ b

a

(
π
(
(Ca Dα

r ρ)
2 + ρ2((Ca Dα

r g)
2 +

c

r2
)
)
+ Φ(

ρ

r
C
a Dα

r ρ)

)
rdr,

است. مثبت همواره α به وابسته c ثابت و می برد ارث به را ϕ تابع ویژگیهای Φ تابع آن در که
می باشد زیر قبول قابل توابع فضای روی E انرژی تابعی مینیمم های تعیین مقاله این در ما هدف

B =



(ρ, g, α) :
0 < α < 1,
ρ ∈ W 1,2[a, b],
ρ(a) = a, ρ(b) = b, C

a Dα
r ρ > 0 a.e,

C
a Dα

r ρ,
C
r Dα

b g ∈ L2[a, b],
g ∈ W 1,2[a, b], C

a Dα
r g,

C
r Dα

b g ∈ L2[a, b].


طوری به می باشد، [۳] مقاله شده ی مطرح مسئله از خاصی حالت مسئله، این آن گاه α = 1 اگر
موجود یافته تعمیم تاب های عنوان با توابع از خاصی کلاس از تابعی برای مینیمم کننده هایی که

است.

پژوهش دست آورد های .۲

مربوط لاگرانژ − اولر معادلات جواب های بررسی تابعی اکسترمم های کردن پیدا های راه از یکی
قابل توابع فضای روی را E تابعی اولر−لاگرانژ معادلات ابتدا بخش این در لذا می باشد، تابعی به
تابعی مینیمم کننده های می دهیم نشان مستقیم روش کمک به سپس می آوریم. بدست  B قبول
افراز را مفروض توابع فضای کلاس ها این دارد. وجود هموتوپی خاص کلاس های از کدام هر روی

می کنند.

و ρ ∈ C1(a, b) ، C
a Dα

r g ∈ C1(a, b) که طوری ,ρ) به g) ∈ B کنید فرض .۱ .۲ قضیه
E به محدود اولر−لاگرانژ معادلات ،E(ρ, g) < ∞ فرض با همچنین .Ca Dα

r ρ ∈ C1(a, b)
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کوتاه عنوان

می شود زیر شکل به (ρ, g)در B مفروض توابع فضای روی

rDα
b (ρ

2r C
a Dα

r g) = 0

−rDα
b (2πr

C
a Dα

r ρ+ ρΦ′(
ρ

r
C
a Dα

r ρ)) = 2πρ(r (Ca Dα
r g)

2 +
c

r
)

+ C
a Dα

r ρ Φ
′(
ρ

r
C
a Dα

r ρ) (۱ .۲)

تابع و دلخواه ε > 0 برای لذا می کنند، مینیمم را ۱ .۱ تابعی (ρ, g) که جایی آن از برهان.
داریم می شود، صفر (a, b) مرز روی آن مقدار که h ∈ C1[(a, b),R2]

d

dε
E(ρ+ εh1, g + εh2)

∣∣∣∣
ε=0

= 0

به جزء انتگرال گیری قاعده ی و کاپوتو کسری مشتق عملگر بودن خطی خاصیت کمک به اکنون
می رسیم. ۱ .۲ معادلات به تغییرات حساب اساسی قضیه و کسری حساب برای [۲] جزء

□

۱ .۱ تابعی که می دهیم نشان [۱] کسری حساب در پوانکاره نامساوی کمک با ادامه در
E ضابطه ی در انتگرال زیر تابع محدبی چند خاصیت و آن کمک به سپس می باشد. کوریسیو

می کنیم ثابت را منیمم کننده ها وجود

وجود l = l(a, b, α) ثابت و است کراندار پایین از B توابع فضای روی E تابعی .۲ .۲ لم
که طوری به دارد،

E(ρ, g) ≥ l[‖ g ‖2L2 +(‖ ρ(r) ‖L2 + a(b− a)
1
2 )2]

،r ∈ [a, b] a ≤ ρ ≤ b تابع [a, b] بازه ی روی (ρ, g) ∈ B هر برای اینکه به توجه با برهان.
داریم پوانکاره نامساوی کمک با و Φ ≥ 0 تابع همچنین

E(ρ, g) ≥ (Γ(α)2)(2α− 1)

(b− a)2α
[‖ g ‖2L2 +(‖ ρ(r) ‖L2 + a(b− a)

1
2 )2].

□ می شود. اثبات لم l = (Γ(α)2)(2α−1)
(b−a)2α

انتخاب با لذا

به توجه با بنابراین است، W 1,2(a, b) سوبولوف فضای از بسته زیرفضایی B توابع فضای
B فضای [۳] مرجع در شده معرفی هموتوپی کلاس های گفت می توان سوبولوف، نشاندن قضیه

می دهیم. نشان m ∈ Z برای cm[B] نماد با را کلاس ها این می کنند. افراز نیز را

برای صورت این در بگیرید، نظر در B توابع فضای روی را E انرژی تابعی .۳ .۲ قضیه
هموتوپی کلاس این روی را E که طوری به است، موجود (ρ, g) ∈ cm[B] زوج m ∈ Zهر

می کنند. مینیمم
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دهکردی شاهرخی م.ص. و طوس نژاد ف.

باشد. cm[B] هموتوپی کلاس روی E دلخواه مینیمم کننده دنباله ی (ρn, gn) کنید فرض برهان.
همین را نظر مورد دنباله کلیت، از شدن کم بدون می باشد، همگرا دنباله ی زیر دارای ۲ .۲ لم بنابر

داریم لذا می گیریم، }زیردنباله
ρn ⇀ ρ in W 1,2(a, b)
gn ⇀ g in W 1,2(a, b)

ρ تابع کرانداری و کاپوتو کسری مشتق بودن خطی به توجه با
ρn
r

C
a Dα

r ρn ⇀
ρ

r
C
a Dα

r ρ in L2(a, b)

ρn
C
a Dα

r gn ⇀ ρCa Dα
r g in L2(a, b)

بنابراین می باشد، نیز پایینی پیوسته ی ضعیف طور به ویژگی دارای E تابعی اینکه از
inf
cm[B]

E ≤ E(ρ, g)

≤ lim inf
n→∞

E(ρn, gn)

≤ inf
cm[B]

E

Wمی باشند، 1,2[a, b]سوبولوف فضای از از بسته ضعیف طور به زیرفضاهای هموتوپی کلاس های
□ .(ρ, g) ∈ cm[B] بنابراین
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*:سخنران سخنرانی

مهتری روابط وارون خطی های نگهدارنده ساختار

آرمندنژاد علی و ∗ یزدان عرفان

رفسنجان (عج) ولیعصر دانشگاه ریاضی، علوم دانشکده ریاضی، گروه

مهتری، روابط برای را وارون خطی های نگهدارنده مفهوم داریم قصد مقاله این در چکیده.
نگهدارنده این پیکربندی و دهیم قرار بررسی و مطالعه مورد سطری مهتری و ضعیف مهتری

آوریم. بدست روابط این از هرکدام برای را وارون خطی های

پیش گفتار .۱

حقیقی های درایه با n×m های ماتریس تمام مجموعه Mn,m کنیم فرض [۱] .۱ .۱ تعریف
هرگاه دهیم می نشان A ≺ B نماد با و است A مهتر B گوییم A,B ∈ Mnm هر برای باشد.

است. دوگانه تصادفی ماتریس یک D ∈ Mnn آن در که A = DB

و است A به نسبت دار جهت مهتری دارای B آنگاه باشند، A,B ∈ Mnm اگر .۲ .۱ تعریف
. Ax ≺ Ay باشیم داشته x ∈ Rn هر ازای به ،هرگاه A ≺d B نویسیم می

تصادفی سطری ماتریس با را D دوگانه تصادفی ماتریس اگر ۱ .۱ تعریف در [۲] .۳ .۱ تعریف
دهیم. می نشان A ≺r B نماد با و است A سطری مهتر B گوییم کنیم، جایگزین R ∈ Mnn

با و است x ضعیف مهتر y گوییم باشند، دلخواه بردار دو x, y ∈ Rn اگر [۱] .۴ .۱ تعریف
هرگاه: دهیم می نشان x ≺w y نماد

n∑
i=1

x↓
i ≤

n∑
i=1

y↓i

باشند. می y و x بردارهای های درایه نزولی آرایش ترتیب به y↓i و x↓
i آن در که

. وارون خطی نگهدارنده سطری، مهتری ضعیف، مهتری مهتری، کلیدی. واژگان
سخنران ∗
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T هرگاه گویند مهتری رابطه خطی نگهدارنده یک را T : Mnm −→ Mnm خطی تبدیل
باشد: زیر ویژگی دارای

.T (A) ≺ T (B) آنگاه A ≺ B اگر A,B ∈ Mnm هر ازای به
اند. شده مشخص [۳] و [۲] در بالا در شده ذکر مهتری های رابطه خطی های نگهدارنده ساختار
ساختار و نموده معرفی زیر بصورت را وارون نگهدارنده خطی عملگر جدید مفهوم ما مقاله این در

نماییم. می تعیین مختلف حالتهای در را خطی عملگرهای این

می مهتری رابطه وارون خطی نگهدارنده را T : Mnm −→ Mnm خطی عملگر .۵ .۱ تعریف
باشد: زیر ویژگی دارای T هرگاه گوییم

.T (B) ≺ T (A) آنگاه A ≺ B اگر A,B ∈ Mnm هر ازای به

پژوهش دست آورد های .۲

نماییم. می تعیین Rn بردارهای برای را وارون خطی نگهدارنده ساختار ابتدا

دهد نتیجه x ≺ y بطوریکه باشد خطی عملگر یک T : Rn −→ Rn کنیم فرض .۱ .۲ قضیه
بطوریکه: شود می یافت a ∈ Rn بردار آنگاه .T (y) ≺ T (x)

T (x) = trx.a , ∀x ∈ Rn.

پایه دلخواه عضو دو ej و ei اگر ،Rn بردارهای برای ≺ مهتری رابطه تعریف طبق برهان.
داریم: قضیه فرض به توجه با .0 ≺ (ei − ej) آنگاه باشند، Rn برای استاندارد

0 ≺ (ei − ej) ⇒ T (ei)− T (ej) ≺ 0

⇒ T (ei)− T (ej) = 0

⇒ T (ei) = T (ej)

این و است یکسان ستونهای دارای آنگاه باشد T عملگر با متناظر ماتریس
[
T
]

اگر بنابراین
بطوریکه: شود می یافت a ∈ Rn بردار ]یعنی

T
]
=

[
a a · · · a

]
⇒ T (x) = trx.a

داریم: آنگاه ، T (x) = trx.a و x ≺ y اگر بالعکس

x ≺ y ⇒ trx = try

⇒ T (x) = trx.a = try.a = T (y)

⇒ T (y) ≺ T (x).

□
اثبات مشابه ای شیوه همچنین و ۵ .۱ تعریف و فوق قضیه اصلی نتیجه از گیری بهره با اکنون
های ماتریس برای را T وارون نگهدارنده خطی عملگر فرم داریم قصد ، [۳] مقاله در ۲ قضیه
A ≺ B اگر که کنیم می استفاده موضوع این از ما زیر قضیه اثبات در نماییم. تعیین Mnm

است. A ≺d B آنگاه
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کوتاه عنوان

باهم زیر موارد آنگاه باشد. خطی عملگر یک T : Mnm −→ Mnm کنید فرض .۲ .۲ قضیه
معادلند:

است. دار جهت مهتری وارون نگهدارنده T الف)
است. مهتری وارون نگهدارنده T ب)

.X ≺ Y که زمانی T (Y ) ≺d T (X) ج)
بطوریکه دارند وجود A1, . . . , An های ماتریس باشد، X ماتریس ام j ستون xj اگر د)

.T (X) =
∑n

j=1(trxj)Aj

را j = 1, . . . ,m برای Ej(x) = xetj که Ej : Rn −→ Mnm نگاشت ابتدا برهان.
دهیم: می قرار سپس و کنیم می تعریف

T j
i = E∗

i TEj

داریم: آنگاه نویسیم. می X =
[
x1| · · · |xm

]
ستونی فرم به را X ماتریس و

T (x1| · · · |xm) =
[∑m

j=1 T
j
1xj| · · · |

∑m
j=1 T

j
mxj

]
داریم: باشد، برقرار قضیه (ج) قسمت اگر

x ≺ y ⇒ T j
i x ≻ T j

i y (۱ .۲)

Aj = دادن قرار با اکنون .T j
i (x) = trx.aji باید که شود می نتیجه ۱ .۲ قضیه از و

داریم:
[
aj1| · · · |ajm

]
T (x1| · · · |xm) =

[∑m
j=1 T

j
1xj| · · · |

∑m
j=1 T

j
mxj

]
=

[∑m
j=1(trxj)a

j
1| · · · |

∑m
j=1(trxj)a

j
m

]
=

m∑
j=1

(trxj)(a
j
1| · · · |ajm)

=
m∑
j=1

(trxj)Aj.

□

((د)⇐(الف)⇐(ج)) اثبات طرفی از رسیدیم. (د) حکم به (ج) قسمت برقراری از ما فوق اثبات در
گردد. می اثبات کامل بصورت فوق قضیه و است واضح و((د)⇐(ب)⇐(ج))

کنیم. می تعیین را ضعیف مهتری وارون نگهدارنده خطی عملگر فرم بعد قضیه در

x ≺w y بطوریکه باشد خطی عملگر یک T : Rn −→ Rn کنید فرض .۳ .۲ قضیه
بطوریکه دارد وجود نامثبت های درایه با a ∈ Rn بردار آنگاه ،T (y) ≺w T (x) دهد نتیجه

.T (x) = trx.a
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داریم: قضیه فرض طبق ، 0 ≺w (ei − ej) که آنجا از برهان.

T (ei − ej) ≺w 0

⇒ T (ei)− T (ej) ≺w 0

آنگاه: ،
[
T
]
=

[
tij
]

t1iواگر − t1j
...

tni − tnj

 ≺w 0

تمام نتیجه در و فوق عبارت در چپ سمت بردار ماکسیمم باید ضعیف مهتری تعریف به توجه با
و ej − ei برای مشابه استدلالی با و باشند. صفر با مساوی یا کوچکتر بردار این های درایه

داریم: شود، می حاصل که ای نتیجه
t1i − t1j = · · · = tni − tnj = 0.

درایه پس ، T (ei) ≺w 0 و 0 ≺w ei چون طرفی از برابرند. باهم
[
T
]

های ستون یعنی این و
□ باشند. صفر مساوی یا کوچکتر باید

[
T
]

ستونهای های

می ارائه سطری مهتری رابطه برای وارون نگهدارنده خطی عملگر فرم بعد قضیه در سرانجام
شود.

نتیجه x ≺r y بطوریکه باشد خطی نگاشت یک T : Rn −→ Rn کنید فرض .۴ .۲ قضیه
.T = 0 آنگاه T (y) ≺r T (x) دهد

است. برقرار وضوح به قضیه برگشت حکم آنگاه T = 0 اگر اولا برهان.
داریم: قضیه فرض طبق .0 ≺r ei ،i هر برای بالعکس.

T (ei) ≺r 0 ⇒ T (ei) = 0

□ است. صفر با برابر T خطی عملگر بنابراین و
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